Upload 11 files
Browse files- 1_Pooling/config.json +7 -0
- README.md +194 -0
- config.json +27 -0
- config_sentence_transformers.json +36 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 312,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,197 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- ru
|
| 4 |
+
- en
|
| 5 |
+
|
| 6 |
+
pipeline_tag: sentence-similarity
|
| 7 |
+
|
| 8 |
+
tags:
|
| 9 |
+
- russian
|
| 10 |
+
- pretraining
|
| 11 |
+
- embeddings
|
| 12 |
+
- tiny
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- sentence-transformers
|
| 16 |
+
- transformers
|
| 17 |
+
|
| 18 |
+
datasets:
|
| 19 |
+
- IlyaGusev/gazeta
|
| 20 |
+
- zloelias/lenta-ru
|
| 21 |
+
- HuggingFaceFW/fineweb-2
|
| 22 |
+
- HuggingFaceFW/fineweb
|
| 23 |
+
|
| 24 |
license: mit
|
| 25 |
+
base_model: sergeyzh/rubert-mini-sts
|
| 26 |
+
|
| 27 |
---
|
| 28 |
+
|
| 29 |
+
## rubert-mini-frida - лёгкая и быстрая модификация FRIDA
|
| 30 |
+
|
| 31 |
+
Модель для расчетов эмбеддингов предложений на русском и английском языках получена методом дистилляции эмбеддингов [ai-forever/FRIDA](https://huggingface.co/ai-forever/FRIDA) (размер эмбеддингов - 1536, слоёв - 24) в [sergeyzh/rubert-mini-sts](https://huggingface.co/sergeyzh/rubert-mini-sts) (размер эмбеддингов - 312, слоёв - 7). Основной режим использования FRIDA - CLS pooling заменен на mean pooling. Каких-либо других изменений поведения модели (модификации или фильтрации эмбеддингов, использования дополнительной модели) не производилось. Дистиляция выполнена в максимально возможном объеме - эмбеддинги русских и английских предложений, работа префиксов.
|
| 32 |
+
|
| 33 |
+
Рекомендуемый размер контекста модели соответствует FRIDA и не превышает 512 токенов (фактический унаследованный от исходной модели - 2048).
|
| 34 |
+
|
| 35 |
+
## Префиксы
|
| 36 |
+
Все префиксы унаследованы от FRIDA.
|
| 37 |
+
Оптимальный (обеспечивающий средние результаты) для большинства задач - "categorize: " прописан по умолчанию в [config_sentence_transformers.json](https://huggingface.co/sergeyzh/rubert-mini-frida/config_sentence_transformers.json)
|
| 38 |
+
|
| 39 |
+
Перечень используемых префиксов и их влияние на оценки модели в [encodechka](https://github.com/avidale/encodechka):
|
| 40 |
+
|
| 41 |
+
| Префикс | STS | PI | NLI | SA | TI |
|
| 42 |
+
|:-----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|
|
| 43 |
+
| - | 0.839 | 0.762 | 0.475 | 0.801 | 0.972 |
|
| 44 |
+
| search_query: | 0.846 | 0.761 | 0.498 | 0.800 | 0.973 |
|
| 45 |
+
| search_document: | 0.830 | 0.748 | 0.468 | 0.794 | 0.972 |
|
| 46 |
+
| paraphrase: | 0.835 | **0.764** | 0.475 | 0.799 | 0.973 |
|
| 47 |
+
| categorize: | **0.850** | 0.761 | 0.516 | 0.802 | **0.973** |
|
| 48 |
+
| categorize_sentiment: | 0.755 | 0.656 | 0.427 | 0.798 | 0.959 |
|
| 49 |
+
| categorize_topic: | 0.734 | 0.523 | 0.389 | 0.728 | 0.959 |
|
| 50 |
+
| categorize_entailment: | 0.837 | 0.753 | **0.544** | **0.802** | 0.970 |
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
**Задачи:**
|
| 54 |
+
|
| 55 |
+
- Semantic text similarity (**STS**);
|
| 56 |
+
- Paraphrase identification (**PI**);
|
| 57 |
+
- Natural language inference (**NLI**);
|
| 58 |
+
- Sentiment analysis (**SA**);
|
| 59 |
+
- Toxicity identification (**TI**).
|
| 60 |
+
|
| 61 |
+
# Метрики
|
| 62 |
+
Оценки модели на бенчмарке [ruMTEB](https://habr.com/ru/companies/sberdevices/articles/831150/):
|
| 63 |
+
|
| 64 |
+
|Model Name | Metric | Frida | rubert-mini-frida | multilingual-e5-large-instruct | multilingual-e5-large |
|
| 65 |
+
|:----------------------------------|:--------------------|-----------------------:|--------------------:|---------------------:|----------------------:|
|
| 66 |
+
|CEDRClassification | Accuracy | **0.646** | 0.552 | 0.500 | 0.448 |
|
| 67 |
+
|GeoreviewClassification | Accuracy | **0.577** | 0.464 | 0.559 | 0.497 |
|
| 68 |
+
|GeoreviewClusteringP2P | V-measure | **0.783** | 0.698 | 0.743 | 0.605 |
|
| 69 |
+
|HeadlineClassification | Accuracy | **0.890** | 0.880 | 0.862 | 0.758 |
|
| 70 |
+
|InappropriatenessClassification | Accuracy | **0.783** | 0.698 | 0.655 | 0.616 |
|
| 71 |
+
|KinopoiskClassification | Accuracy | **0.705** | 0.595 | 0.661 | 0.566 |
|
| 72 |
+
|RiaNewsRetrieval | NDCG@10 | **0.868** | 0.721 | 0.824 | 0.807 |
|
| 73 |
+
|RuBQReranking | MAP@10 | **0.771** | 0.711 | 0.717 | 0.756 |
|
| 74 |
+
|RuBQRetrieval | NDCG@10 | 0.724 | 0.654 | 0.692 | **0.741** |
|
| 75 |
+
|RuReviewsClassification | Accuracy | **0.751** | 0.658 | 0.686 | 0.653 |
|
| 76 |
+
|RuSTSBenchmarkSTS | Pearson correlation | 0.814 | 0.803 | **0.840** | 0.831 |
|
| 77 |
+
|RuSciBenchGRNTIClassification | Accuracy | **0.699** | 0.625 | 0.651 | 0.582 |
|
| 78 |
+
|RuSciBenchGRNTIClusteringP2P | V-measure | **0.670** | 0.586 | 0.622 | 0.520 |
|
| 79 |
+
|RuSciBenchOECDClassification | Accuracy | **0.546** | 0.493 | 0.502 | 0.445 |
|
| 80 |
+
|RuSciBenchOECDClusteringP2P | V-measure | **0.566** | 0.507 | 0.528 | 0.450 |
|
| 81 |
+
|SensitiveTopicsClassification | Accuracy | **0.398** | 0.373 | 0.323 | 0.257 |
|
| 82 |
+
|TERRaClassification | Average Precision | **0.665** | 0.606 | 0.639 | 0.584 |
|
| 83 |
+
|
| 84 |
+
|Model Name | Metric | Frida | rubert-mini-frida | multilingual-e5-large-instruct | multilingual-e5-large |
|
| 85 |
+
|:----------------------------------|:--------------------|-----------------------:|--------------------:|----------------------:|---------------------:|
|
| 86 |
+
|Classification | Accuracy | **0.707** | 0.631 | 0.654 | 0.588 |
|
| 87 |
+
|Clustering | V-measure | **0.673** | 0.597 | 0.631 | 0.525 |
|
| 88 |
+
|MultiLabelClassification | Accuracy | **0.522** | 0.463 | 0.412 | 0.353 |
|
| 89 |
+
|PairClassification | Average Precision | **0.665** | 0.606 | 0.639 | 0.584 |
|
| 90 |
+
|Reranking | MAP@10 | **0.771** | 0.711 | 0.717 | 0.756 |
|
| 91 |
+
|Retrieval | NDCG@10 | **0.796** | 0.687 | 0.758 | 0.774 |
|
| 92 |
+
|STS | Pearson correlation | 0.814 | 0.803 | **0.840** | 0.831 |
|
| 93 |
+
|Average | Average | **0.707** | 0.643 | 0.664 | 0.630 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
## Использование модели с библиотекой `transformers`:
|
| 98 |
+
|
| 99 |
+
```python
|
| 100 |
+
import torch
|
| 101 |
+
import torch.nn.functional as F
|
| 102 |
+
from transformers import AutoTokenizer, AutoModel
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def pool(hidden_state, mask, pooling_method="mean"):
|
| 106 |
+
if pooling_method == "mean":
|
| 107 |
+
s = torch.sum(hidden_state * mask.unsqueeze(-1).float(), dim=1)
|
| 108 |
+
d = mask.sum(axis=1, keepdim=True).float()
|
| 109 |
+
return s / d
|
| 110 |
+
elif pooling_method == "cls":
|
| 111 |
+
return hidden_state[:, 0]
|
| 112 |
+
|
| 113 |
+
inputs = [
|
| 114 |
+
#
|
| 115 |
+
"paraphrase: В Ярославской области разрешили работу бань, но без посетителей",
|
| 116 |
+
"categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.",
|
| 117 |
+
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?",
|
| 118 |
+
#
|
| 119 |
+
"paraphrase: Ярославским баням разрешили работать без посетителей",
|
| 120 |
+
"categorize_entailment: Женщину спасают врачи.",
|
| 121 |
+
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование."
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/rubert-mini-frida")
|
| 125 |
+
model = AutoModel.from_pretrained("sergeyzh/rubert-mini-frida")
|
| 126 |
+
|
| 127 |
+
tokenized_inputs = tokenizer(inputs, max_length=512, padding=True, truncation=True, return_tensors="pt")
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
outputs = model(**tokenized_inputs)
|
| 131 |
+
|
| 132 |
+
embeddings = pool(
|
| 133 |
+
outputs.last_hidden_state,
|
| 134 |
+
tokenized_inputs["attention_mask"],
|
| 135 |
+
pooling_method="mean"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 139 |
+
sim_scores = embeddings[:3] @ embeddings[3:].T
|
| 140 |
+
print(sim_scores.diag().tolist())
|
| 141 |
+
# [0.9423348903656006, 0.8306248188018799, 0.7095720767974854]
|
| 142 |
+
# [0.9360030293464661, 0.8591322302818298, 0.728583037853241] - FRIDA
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
## Использование с `sentence_transformers`:
|
| 146 |
+
|
| 147 |
+
```python
|
| 148 |
+
from sentence_transformers import SentenceTransformer
|
| 149 |
+
|
| 150 |
+
inputs = [
|
| 151 |
+
#
|
| 152 |
+
"paraphrase: В Ярославской области разрешили работу бань, но без посетителей",
|
| 153 |
+
"categorize_entailment: Женщину доставили в больницу, за ее жизнь сейчас борются врачи.",
|
| 154 |
+
"search_query: Сколько программистов нужно, чтобы вкрутить лампочку?",
|
| 155 |
+
#
|
| 156 |
+
"paraphrase: Ярославским баням разрешили работать без посетителей",
|
| 157 |
+
"categorize_entailment: Женщину спасают врачи.",
|
| 158 |
+
"search_document: Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование."
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
# loads model with mean pooling
|
| 162 |
+
model = SentenceTransformer("sergeyzh/rubert-mini-frida")
|
| 163 |
+
|
| 164 |
+
# embeddings are normalized by default
|
| 165 |
+
embeddings = model.encode(inputs, convert_to_tensor=True)
|
| 166 |
+
|
| 167 |
+
sim_scores = embeddings[:3] @ embeddings[3:].T
|
| 168 |
+
print(sim_scores.diag().tolist())
|
| 169 |
+
# [0.9413310289382935, 0.8383190631866455, 0.7195918560028076]
|
| 170 |
+
# [0.9360026717185974, 0.8591331243515015, 0.7285830974578857] - FRIDA
|
| 171 |
+
```
|
| 172 |
+
|
| 173 |
+
### рекомендуемый с использованием prompt (sentence-transformers>=2.4.0):
|
| 174 |
+
|
| 175 |
+
```python
|
| 176 |
+
from sentence_transformers import SentenceTransformer
|
| 177 |
+
|
| 178 |
+
# loads model with mean pooling
|
| 179 |
+
model = SentenceTransformer("sergeyzh/rubert-mini-frida")
|
| 180 |
+
|
| 181 |
+
paraphrase = model.encode(["В Ярославской области разрешили работу бань, но без посетителей", "Ярославским баням разрешили работать без посетителей"], prompt="paraphrase: ")
|
| 182 |
+
print(paraphrase[0] @ paraphrase[1].T)
|
| 183 |
+
# 0.94233495
|
| 184 |
+
# 0.9360032 - FRIDA
|
| 185 |
+
|
| 186 |
+
categorize_entailment = model.encode(["Женщину доставили в больницу, за ее жизнь сейчас борются врачи.", "Женщину спасают врачи."], prompt="categorize_entailment: ")
|
| 187 |
+
print(categorize_entailment[0] @ categorize_entailment[1].T)
|
| 188 |
+
# 0.8306249
|
| 189 |
+
# 0.8591322 - FRIDA
|
| 190 |
+
|
| 191 |
+
query_embedding = model.encode("Сколько программистов нужно, чтобы вкрутить лампочку?", prompt="search_query: ")
|
| 192 |
+
document_embedding = model.encode("Чтобы вкрутить лампочку, требуется три программиста: один напишет программу извлечения лампочки, другой — вкручивания лампочки, а третий проведет тестирование.", prompt="search_document: ")
|
| 193 |
+
print(query_embedding @ document_embedding.T)
|
| 194 |
+
# 0.70957196
|
| 195 |
+
# 0.7285831 - FRIDA
|
| 196 |
+
```
|
| 197 |
+
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sergeyzh/rubert-mini-frida",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"emb_size": 312,
|
| 9 |
+
"gradient_checkpointing": false,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 312,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 600,
|
| 15 |
+
"layer_norm_eps": 1e-12,
|
| 16 |
+
"max_position_embeddings": 2048,
|
| 17 |
+
"model_type": "bert",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 7,
|
| 20 |
+
"pad_token_id": 0,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.48.2",
|
| 24 |
+
"type_vocab_size": 2,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 83828
|
| 27 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.7.0",
|
| 4 |
+
"transformers": "4.40.1",
|
| 5 |
+
"pytorch": "2.2.1+cu118"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {
|
| 8 |
+
"query": "search_query: ",
|
| 9 |
+
"passage": "search_document: ",
|
| 10 |
+
"CEDRClassification": "categorize_sentiment: ",
|
| 11 |
+
"GeoreviewClassification": "categorize_entailment: ",
|
| 12 |
+
"GeoreviewClusteringP2P": "paraphrase: ",
|
| 13 |
+
"HeadlineClassification": "categorize_topic: ",
|
| 14 |
+
"InappropriatenessClassification": "categorize_topic: ",
|
| 15 |
+
"KinopoiskClassification": "categorize_sentiment: ",
|
| 16 |
+
"MassiveIntentClassification": "categorize_entailment: ",
|
| 17 |
+
"MassiveScenarioClassification": "categorize_entailment: ",
|
| 18 |
+
"RuReviewsClassification": "categorize_entailment: ",
|
| 19 |
+
"RUParaPhraserSTS": "paraphrase: ",
|
| 20 |
+
"RuSTSBenchmarkSTS": "search_query: ",
|
| 21 |
+
"STS22": "paraphrase: ",
|
| 22 |
+
"RuSciBenchGRNTIClassification": "categorize_topic: ",
|
| 23 |
+
"RuSciBenchGRNTIClusteringP2P": "categorize_topic: ",
|
| 24 |
+
"RuSciBenchOECDClassification": "categorize_topic: ",
|
| 25 |
+
"RuSciBenchOECDClusteringP2P": "categorize_topic: ",
|
| 26 |
+
"SensitiveTopicsClassification": "categorize_topic: ",
|
| 27 |
+
"TERRa": "categorize_entailment: ",
|
| 28 |
+
"Classification": "categorize: ",
|
| 29 |
+
"MultilabelClassification": "categorize: ",
|
| 30 |
+
"Clustering": "categorize: ",
|
| 31 |
+
"PairClassification": "categorize: ",
|
| 32 |
+
"STS": "paraphrase: "
|
| 33 |
+
},
|
| 34 |
+
"default_prompt_name": "Classification",
|
| 35 |
+
"similarity_fn_name": null
|
| 36 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4f7f7e9866e57e7f19f76d3960373177f30c6ac627a8c6a677472d526f44d1cd
|
| 3 |
+
size 129063328
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 2048,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 2048,
|
| 50 |
+
"never_split": null,
|
| 51 |
+
"pad_token": "[PAD]",
|
| 52 |
+
"sep_token": "[SEP]",
|
| 53 |
+
"strip_accents": null,
|
| 54 |
+
"tokenize_chinese_chars": true,
|
| 55 |
+
"tokenizer_class": "BertTokenizer",
|
| 56 |
+
"unk_token": "[UNK]"
|
| 57 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|