seroe commited on
Commit
b19ce30
·
verified ·
1 Parent(s): 72d3389

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": true,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,616 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:215676
11
+ - loss:MatryoshkaLoss
12
+ - loss:CachedMultipleNegativesRankingLoss
13
+ base_model: Qwen/Qwen3-Embedding-0.6B
14
+ widget:
15
+ - source_sentence: Ortak Havuz Tarifesi kapsamında her bir hat için aylık sabit ücret
16
+ 25,5 TL olarak belirlenmiştir ve bu ücret KDV ile ÖİV dahil olarak hesaplanmıştır.
17
+ sentences:
18
+ - Vodafone'un Ortak Havuz Tarifesi, müşterilere ücretsiz olarak sunulmaktadır ve
19
+ herhangi bir sabit ücret talep edilmemektedir.
20
+ - Her bir hat için Ortak Havuz Tarifesi'nin aylık sabit ücreti, vergiler dahil 25,5
21
+ TL'dir.
22
+ - Geleceğin Karakartalı, Vodafone ve Beşiktaş JK'nin ortak çalışmasıyla genç futbol
23
+ yeteneklerini Türkiye çapında keşfetmeyi hedefleyen bir projedir.
24
+ - source_sentence: Taşınma durumunda, teknik altyapı eksikliği nedeniyle Vodafone
25
+ Evde Fiber İnternet hizmeti sağlanamazsa, cezai işlem uygulanmaz ve alternatif
26
+ hizmetlere geçiş yapılabilir.
27
+ sentences:
28
+ - Vodafone faturasız tarifelerinde, yenileme gününde yeterli bakiye bulunmuyorsa
29
+ içerikler yenilenmez, ancak daha önce yüklenen içerikler bakiye olmadan kullanılabilir.
30
+ - Vodafone Evde Fiber İnternet hizmeti taşınma sırasında altyapı eksikliği nedeniyle
31
+ sağlanamazsa, aboneye ceza uygulanır ve alternatif hizmet sunulmaz.
32
+ - Vodafone Evde Fiber İnternet hizmeti taşınma sırasında altyapı eksikliği nedeniyle
33
+ sağlanamazsa, aboneye cezai işlem uygulanmaz ve ADSL veya Fiber Hız hizmetine
34
+ geçiş yapılabilir.
35
+ - source_sentence: Tarife kapsamında sunulan dakika, SMS ve internet hakları, belirli
36
+ bir limitin aşılması durumunda ek paketlerle ücretlendirilir.
37
+ sentences:
38
+ - Vodafone'un tarifelerinde aşım durumunda ek paketler yerine ücretsiz kullanım
39
+ hakkı sunulmaktadır.
40
+ - Vodafone'un geçmiş kampanyalarında, Samsung Note 3 Neo en pahalı cihazlardan biri
41
+ olarak müşterilere sunulmuştur.
42
+ - Uyumlu 5 Tarifesi'nde verilen dakika, SMS ve internet hakları bittiğinde, ek paketler
43
+ devreye girerek avantajlı fiyatlarla ücretlendirme yapılır.
44
+ - source_sentence: Mobil numara taşınabilirliği olan ülkelerdeki Vodafone operatörlerine
45
+ yapılan aramalarda, diğer mobil operatörlerin prefikslerini içeren numaralar indirimli
46
+ tarifeden yararlanamaz.
47
+ sentences:
48
+ - Vodafone operatörlerine yapılan aramalarda, mobil numara taşınabilirliği olan
49
+ ülkelerdeki diğer operatörlerin prefikslerini içeren numaralar indirimli fiyatlara
50
+ dahil edilmez.
51
+ - Vodafone'un tarifelerinde ücretsiz pass paketi yer almazken, Her Şey Dahil Pasaport
52
+ paketi ücretli olarak sunulmaktadır.
53
+ - Dünya Küçük Kurumsal tarifesi, yurtdışı aramalar için tüm numaralara eşit fiyatlandırma
54
+ sunar ve prefiks kısıtlaması içermez.
55
+ - source_sentence: Vodafone hattınızın aktivasyonu sırasında eksik evraklarınızın
56
+ tamamlanması gerektiği belirtilmiştir. Hattınızın iptal olmaması için 3 gün içinde
57
+ Vodafone mağazasını ziyaret etmeniz önemlidir.
58
+ sentences:
59
+ - Vodafone, boşanmış annelerin çocuklarına gençlik tarifesi tanımlaması için kimlik
60
+ doğrulama ve kullanıcı tanımlama süreçlerini Cep Merkezlerinde gerçekleştirmektedir.
61
+ - Vodafone hattınızın aktivasyonu sırasında herhangi bir evrak eksikliği bulunmamaktadır.
62
+ Hattınız otomatik olarak aktif hale gelecektir.
63
+ - Vodafone hattınızın aktif hale gelebilmesi için eksik olan abonelik sözleşmesi
64
+ ve kimlik belgelerinizi tamamlamanız gerekmektedir. Bu işlemi 3 gün içinde Vodafone
65
+ mağazasında gerçekleştirebilirsiniz.
66
+ datasets:
67
+ - seroe/vodex-turkish-triplets-large
68
+ pipeline_tag: sentence-similarity
69
+ library_name: sentence-transformers
70
+ metrics:
71
+ - cosine_accuracy
72
+ model-index:
73
+ - name: Qwen3-Embedding-0.6B Türkçe Triplet Matryoshka
74
+ results:
75
+ - task:
76
+ type: triplet
77
+ name: Triplet
78
+ dataset:
79
+ name: tr triplet dev 1024d
80
+ type: tr-triplet-dev-1024d
81
+ metrics:
82
+ - type: cosine_accuracy
83
+ value: 0.998831570148468
84
+ name: Cosine Accuracy
85
+ - task:
86
+ type: triplet
87
+ name: Triplet
88
+ dataset:
89
+ name: tr triplet dev 768d
90
+ type: tr-triplet-dev-768d
91
+ metrics:
92
+ - type: cosine_accuracy
93
+ value: 0.9987481236457825
94
+ name: Cosine Accuracy
95
+ - task:
96
+ type: triplet
97
+ name: Triplet
98
+ dataset:
99
+ name: tr triplet dev 512d
100
+ type: tr-triplet-dev-512d
101
+ metrics:
102
+ - type: cosine_accuracy
103
+ value: 0.9986646771430969
104
+ name: Cosine Accuracy
105
+ - task:
106
+ type: triplet
107
+ name: Triplet
108
+ dataset:
109
+ name: tr triplet dev 256d
110
+ type: tr-triplet-dev-256d
111
+ metrics:
112
+ - type: cosine_accuracy
113
+ value: 0.9984142780303955
114
+ name: Cosine Accuracy
115
+ - task:
116
+ type: triplet
117
+ name: Triplet
118
+ dataset:
119
+ name: all nli test 1024d
120
+ type: all-nli-test-1024d
121
+ metrics:
122
+ - type: cosine_accuracy
123
+ value: 0.9987481236457825
124
+ name: Cosine Accuracy
125
+ - task:
126
+ type: triplet
127
+ name: Triplet
128
+ dataset:
129
+ name: all nli test 768d
130
+ type: all-nli-test-768d
131
+ metrics:
132
+ - type: cosine_accuracy
133
+ value: 0.9986646771430969
134
+ name: Cosine Accuracy
135
+ - task:
136
+ type: triplet
137
+ name: Triplet
138
+ dataset:
139
+ name: all nli test 512d
140
+ type: all-nli-test-512d
141
+ metrics:
142
+ - type: cosine_accuracy
143
+ value: 0.9986646771430969
144
+ name: Cosine Accuracy
145
+ - task:
146
+ type: triplet
147
+ name: Triplet
148
+ dataset:
149
+ name: all nli test 256d
150
+ type: all-nli-test-256d
151
+ metrics:
152
+ - type: cosine_accuracy
153
+ value: 0.99833083152771
154
+ name: Cosine Accuracy
155
+ ---
156
+
157
+ # Qwen3-Embedding-0.6B Türkçe Triplet Matryoshka
158
+
159
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
160
+
161
+ ## Model Details
162
+
163
+ ### Model Description
164
+ - **Model Type:** Sentence Transformer
165
+ - **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision 744169034862c8eec56628663995004342e4e449 -->
166
+ - **Maximum Sequence Length:** 32768 tokens
167
+ - **Output Dimensionality:** 1024 dimensions
168
+ - **Similarity Function:** Cosine Similarity
169
+ - **Training Dataset:**
170
+ - [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large)
171
+ - **Language:** tr
172
+ - **License:** apache-2.0
173
+
174
+ ### Model Sources
175
+
176
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
177
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
178
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
179
+
180
+ ### Full Model Architecture
181
+
182
+ ```
183
+ SentenceTransformer(
184
+ (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model
185
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
186
+ (2): Normalize()
187
+ )
188
+ ```
189
+
190
+ ## Usage
191
+
192
+ ### Direct Usage (Sentence Transformers)
193
+
194
+ First install the Sentence Transformers library:
195
+
196
+ ```bash
197
+ pip install -U sentence-transformers
198
+ ```
199
+
200
+ Then you can load this model and run inference.
201
+ ```python
202
+ from sentence_transformers import SentenceTransformer
203
+
204
+ # Download from the 🤗 Hub
205
+ model = SentenceTransformer("seroe/Qwen3-Embedding-0.6B-turkish-triplet-matryoshka-v2")
206
+ # Run inference
207
+ sentences = [
208
+ 'Vodafone hattınızın aktivasyonu sırasında eksik evraklarınızın tamamlanması gerektiği belirtilmiştir. Hattınızın iptal olmaması için 3 gün içinde Vodafone mağazasını ziyaret etmeniz önemlidir.',
209
+ 'Vodafone hattınızın aktif hale gelebilmesi için eksik olan abonelik sözleşmesi ve kimlik belgelerinizi tamamlamanız gerekmektedir. Bu işlemi 3 gün içinde Vodafone mağazasında gerçekleştirebilirsiniz.',
210
+ 'Vodafone hattınızın aktivasyonu sırasında herhangi bir evrak eksikliği bulunmamaktadır. Hattınız otomatik olarak aktif hale gelecektir.',
211
+ ]
212
+ embeddings = model.encode(sentences)
213
+ print(embeddings.shape)
214
+ # [3, 1024]
215
+
216
+ # Get the similarity scores for the embeddings
217
+ similarities = model.similarity(embeddings, embeddings)
218
+ print(similarities.shape)
219
+ # [3, 3]
220
+ ```
221
+
222
+ <!--
223
+ ### Direct Usage (Transformers)
224
+
225
+ <details><summary>Click to see the direct usage in Transformers</summary>
226
+
227
+ </details>
228
+ -->
229
+
230
+ <!--
231
+ ### Downstream Usage (Sentence Transformers)
232
+
233
+ You can finetune this model on your own dataset.
234
+
235
+ <details><summary>Click to expand</summary>
236
+
237
+ </details>
238
+ -->
239
+
240
+ <!--
241
+ ### Out-of-Scope Use
242
+
243
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
244
+ -->
245
+
246
+ ## Evaluation
247
+
248
+ ### Metrics
249
+
250
+ #### Triplet
251
+
252
+ * Datasets: `tr-triplet-dev-1024d` and `all-nli-test-1024d`
253
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
254
+ ```json
255
+ {
256
+ "truncate_dim": 1024
257
+ }
258
+ ```
259
+
260
+ | Metric | tr-triplet-dev-1024d | all-nli-test-1024d |
261
+ |:--------------------|:---------------------|:-------------------|
262
+ | **cosine_accuracy** | **0.9988** | **0.9987** |
263
+
264
+ #### Triplet
265
+
266
+ * Datasets: `tr-triplet-dev-768d` and `all-nli-test-768d`
267
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
268
+ ```json
269
+ {
270
+ "truncate_dim": 768
271
+ }
272
+ ```
273
+
274
+ | Metric | tr-triplet-dev-768d | all-nli-test-768d |
275
+ |:--------------------|:--------------------|:------------------|
276
+ | **cosine_accuracy** | **0.9987** | **0.9987** |
277
+
278
+ #### Triplet
279
+
280
+ * Datasets: `tr-triplet-dev-512d` and `all-nli-test-512d`
281
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
282
+ ```json
283
+ {
284
+ "truncate_dim": 512
285
+ }
286
+ ```
287
+
288
+ | Metric | tr-triplet-dev-512d | all-nli-test-512d |
289
+ |:--------------------|:--------------------|:------------------|
290
+ | **cosine_accuracy** | **0.9987** | **0.9987** |
291
+
292
+ #### Triplet
293
+
294
+ * Datasets: `tr-triplet-dev-256d` and `all-nli-test-256d`
295
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
296
+ ```json
297
+ {
298
+ "truncate_dim": 256
299
+ }
300
+ ```
301
+
302
+ | Metric | tr-triplet-dev-256d | all-nli-test-256d |
303
+ |:--------------------|:--------------------|:------------------|
304
+ | **cosine_accuracy** | **0.9984** | **0.9983** |
305
+
306
+ <!--
307
+ ## Bias, Risks and Limitations
308
+
309
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
310
+ -->
311
+
312
+ <!--
313
+ ### Recommendations
314
+
315
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
316
+ -->
317
+
318
+ ## Training Details
319
+
320
+ ### Training Dataset
321
+
322
+ #### vodex-turkish-triplets-large
323
+
324
+ * Dataset: [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) at [1fe9d63](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large/tree/1fe9d63490a69cb96da6b76f4bff1a43c48cbdee)
325
+ * Size: 215,676 training samples
326
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
327
+ * Approximate statistics based on the first 1000 samples:
328
+ | | query | positive | negative |
329
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
330
+ | type | string | string | string |
331
+ | details | <ul><li>min: 19 tokens</li><li>mean: 44.11 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 45.45 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 37.27 tokens</li><li>max: 76 tokens</li></ul> |
332
+ * Samples:
333
+ | query | positive | negative |
334
+ |:--------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
335
+ | <code>Vodafone'un Mobil Form Servisi, 12 Şubat 2021 itibarıyla yeni müşteri alımına kapatılmıştır.</code> | <code>12 Şubat 2021 tarihinden itibaren Vodafone'un Mobil Form Servisi yeni kullanıcılar için erişime kapatılmıştır.</code> | <code>Mobil Form Servisi, 2022 yılında yeni müşterilere açılmıştır ve aktif olarak kullanılmaktadır.</code> |
336
+ | <code>Paket, VOIP ve P2P gibi hizmetleri desteklemez ve cihazın 4.5G/3G ayarlarının yapılmış olması gereklidir.</code> | <code>Vodafone'un paketi, VOIP ve P2P hizmetlerini içermez ve cihazın 4.5G/3G bağlantı ayarlarının aktif olması gerekir.</code> | <code>Paket, VOIP ve P2P hizmetlerini tamamen destekler ve cihaz ayarlarına gerek olmadan kullanılabilir.</code> |
337
+ | <code>Vodafone'un bireysel esnaf tarifeleri, farklı meslek gruplarına özel paket seçenekleriyle geniş bir yelpaze sunar.</code> | <code>Bireysel esnaf tarifeleri, Vodafone tarafından çeşitli meslek gruplarına uygun paketlerle desteklenmektedir.</code> | <code>Vodafone'un bireysel esnaf tarifeleri, yalnızca belirli bir meslek grubuna hitap eder ve diğer meslekler için uygun değildir.</code> |
338
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
339
+ ```json
340
+ {
341
+ "loss": "CachedMultipleNegativesRankingLoss",
342
+ "matryoshka_dims": [
343
+ 1024,
344
+ 768,
345
+ 512,
346
+ 256
347
+ ],
348
+ "matryoshka_weights": [
349
+ 1,
350
+ 1,
351
+ 1,
352
+ 1
353
+ ],
354
+ "n_dims_per_step": -1
355
+ }
356
+ ```
357
+
358
+ ### Evaluation Dataset
359
+
360
+ #### vodex-turkish-triplets-large
361
+
362
+ * Dataset: [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) at [1fe9d63](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large/tree/1fe9d63490a69cb96da6b76f4bff1a43c48cbdee)
363
+ * Size: 11,982 evaluation samples
364
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
365
+ * Approximate statistics based on the first 1000 samples:
366
+ | | query | positive | negative |
367
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
368
+ | type | string | string | string |
369
+ | details | <ul><li>min: 23 tokens</li><li>mean: 44.51 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 45.89 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 37.23 tokens</li><li>max: 89 tokens</li></ul> |
370
+ * Samples:
371
+ | query | positive | negative |
372
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|
373
+ | <code>Vodafone'un 'Yarına Hazır Cihaz Kampanyaları' kapsamında farklı marka ve modellerde cihazlar, çeşitli depolama seçenekleri ve renk alternatifleriyle sunulmaktadır.</code> | <code>Vodafone'un cihaz kampanyaları, geniş ürün yelpazesiyle farklı depolama kapasiteleri ve renk seçenekleri sunarak kullanıcıların ihtiyaçlarına hitap etmektedir.</code> | <code>Vodafone'un cihaz kampanyaları yalnızca belirli bir marka ve modelle sınırlıdır, diğer seçenekler sunulmamaktadır.</code> |
374
+ | <code>Devreden ve duran tarifeler, kullanıcıların kullanılmayan internet haklarını bir sonraki döneme taşımasına olanak tanır ve ek paketlerle bu haklar genişletilebilir.</code> | <code>Kullanıcılar, devreden ve duran tarifeler sayesinde kullanılmayan internet haklarını bir sonraki aya aktarabilir ve ek paketlerle bu haklarını artırabilir.</code> | <code>Devreden ve duran tarifeler, kullanıcıların internet haklarını bir sonraki döneme taşımasına izin vermez, yalnızca mevcut dönemde kullanım sağlar.</code> |
375
+ | <code>Cebinize Uyan İnternet kampanyası, numara taşıma, yeni hat tesisi veya tarifeler arası geçiş yapan abonelere otomatik olarak tanımlanır. Bu haklar, diğer promosyonlardan sonra kullanılabilir.</code> | <code>Vodafone'un kampanyası, numara taşıma, yeni hat açma veya tarifeler arası geçiş yapan abonelere otomatik olarak tanımlanır ve kullanım sırası diğer promosyonlardan sonra gelir.</code> | <code>Evcil hayvan sahiplenme kampanyasında, yeni bir evcil hayvan edinen kişilere ücretsiz mama ve bakım hizmeti sunulur.</code> |
376
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
377
+ ```json
378
+ {
379
+ "loss": "CachedMultipleNegativesRankingLoss",
380
+ "matryoshka_dims": [
381
+ 1024,
382
+ 768,
383
+ 512,
384
+ 256
385
+ ],
386
+ "matryoshka_weights": [
387
+ 1,
388
+ 1,
389
+ 1,
390
+ 1
391
+ ],
392
+ "n_dims_per_step": -1
393
+ }
394
+ ```
395
+
396
+ ### Training Hyperparameters
397
+ #### Non-Default Hyperparameters
398
+
399
+ - `eval_strategy`: steps
400
+ - `per_device_train_batch_size`: 2048
401
+ - `per_device_eval_batch_size`: 256
402
+ - `weight_decay`: 0.01
403
+ - `num_train_epochs`: 1
404
+ - `lr_scheduler_type`: cosine
405
+ - `warmup_ratio`: 0.05
406
+ - `save_only_model`: True
407
+ - `bf16`: True
408
+ - `batch_sampler`: no_duplicates
409
+
410
+ #### All Hyperparameters
411
+ <details><summary>Click to expand</summary>
412
+
413
+ - `overwrite_output_dir`: False
414
+ - `do_predict`: False
415
+ - `eval_strategy`: steps
416
+ - `prediction_loss_only`: True
417
+ - `per_device_train_batch_size`: 2048
418
+ - `per_device_eval_batch_size`: 256
419
+ - `per_gpu_train_batch_size`: None
420
+ - `per_gpu_eval_batch_size`: None
421
+ - `gradient_accumulation_steps`: 1
422
+ - `eval_accumulation_steps`: None
423
+ - `torch_empty_cache_steps`: None
424
+ - `learning_rate`: 5e-05
425
+ - `weight_decay`: 0.01
426
+ - `adam_beta1`: 0.9
427
+ - `adam_beta2`: 0.999
428
+ - `adam_epsilon`: 1e-08
429
+ - `max_grad_norm`: 1.0
430
+ - `num_train_epochs`: 1
431
+ - `max_steps`: -1
432
+ - `lr_scheduler_type`: cosine
433
+ - `lr_scheduler_kwargs`: {}
434
+ - `warmup_ratio`: 0.05
435
+ - `warmup_steps`: 0
436
+ - `log_level`: passive
437
+ - `log_level_replica`: warning
438
+ - `log_on_each_node`: True
439
+ - `logging_nan_inf_filter`: True
440
+ - `save_safetensors`: True
441
+ - `save_on_each_node`: False
442
+ - `save_only_model`: True
443
+ - `restore_callback_states_from_checkpoint`: False
444
+ - `no_cuda`: False
445
+ - `use_cpu`: False
446
+ - `use_mps_device`: False
447
+ - `seed`: 42
448
+ - `data_seed`: None
449
+ - `jit_mode_eval`: False
450
+ - `use_ipex`: False
451
+ - `bf16`: True
452
+ - `fp16`: False
453
+ - `fp16_opt_level`: O1
454
+ - `half_precision_backend`: auto
455
+ - `bf16_full_eval`: False
456
+ - `fp16_full_eval`: False
457
+ - `tf32`: None
458
+ - `local_rank`: 0
459
+ - `ddp_backend`: None
460
+ - `tpu_num_cores`: None
461
+ - `tpu_metrics_debug`: False
462
+ - `debug`: []
463
+ - `dataloader_drop_last`: False
464
+ - `dataloader_num_workers`: 0
465
+ - `dataloader_prefetch_factor`: None
466
+ - `past_index`: -1
467
+ - `disable_tqdm`: False
468
+ - `remove_unused_columns`: True
469
+ - `label_names`: None
470
+ - `load_best_model_at_end`: False
471
+ - `ignore_data_skip`: False
472
+ - `fsdp`: []
473
+ - `fsdp_min_num_params`: 0
474
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
475
+ - `fsdp_transformer_layer_cls_to_wrap`: None
476
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
477
+ - `deepspeed`: None
478
+ - `label_smoothing_factor`: 0.0
479
+ - `optim`: adamw_torch
480
+ - `optim_args`: None
481
+ - `adafactor`: False
482
+ - `group_by_length`: False
483
+ - `length_column_name`: length
484
+ - `ddp_find_unused_parameters`: None
485
+ - `ddp_bucket_cap_mb`: None
486
+ - `ddp_broadcast_buffers`: False
487
+ - `dataloader_pin_memory`: True
488
+ - `dataloader_persistent_workers`: False
489
+ - `skip_memory_metrics`: True
490
+ - `use_legacy_prediction_loop`: False
491
+ - `push_to_hub`: False
492
+ - `resume_from_checkpoint`: None
493
+ - `hub_model_id`: None
494
+ - `hub_strategy`: every_save
495
+ - `hub_private_repo`: None
496
+ - `hub_always_push`: False
497
+ - `gradient_checkpointing`: False
498
+ - `gradient_checkpointing_kwargs`: None
499
+ - `include_inputs_for_metrics`: False
500
+ - `include_for_metrics`: []
501
+ - `eval_do_concat_batches`: True
502
+ - `fp16_backend`: auto
503
+ - `push_to_hub_model_id`: None
504
+ - `push_to_hub_organization`: None
505
+ - `mp_parameters`:
506
+ - `auto_find_batch_size`: False
507
+ - `full_determinism`: False
508
+ - `torchdynamo`: None
509
+ - `ray_scope`: last
510
+ - `ddp_timeout`: 1800
511
+ - `torch_compile`: False
512
+ - `torch_compile_backend`: None
513
+ - `torch_compile_mode`: None
514
+ - `include_tokens_per_second`: False
515
+ - `include_num_input_tokens_seen`: False
516
+ - `neftune_noise_alpha`: None
517
+ - `optim_target_modules`: None
518
+ - `batch_eval_metrics`: False
519
+ - `eval_on_start`: False
520
+ - `use_liger_kernel`: False
521
+ - `eval_use_gather_object`: False
522
+ - `average_tokens_across_devices`: False
523
+ - `prompts`: None
524
+ - `batch_sampler`: no_duplicates
525
+ - `multi_dataset_batch_sampler`: proportional
526
+
527
+ </details>
528
+
529
+ ### Training Logs
530
+ | Epoch | Step | Training Loss | Validation Loss | tr-triplet-dev-1024d_cosine_accuracy | tr-triplet-dev-768d_cosine_accuracy | tr-triplet-dev-512d_cosine_accuracy | tr-triplet-dev-256d_cosine_accuracy | all-nli-test-1024d_cosine_accuracy | all-nli-test-768d_cosine_accuracy | all-nli-test-512d_cosine_accuracy | all-nli-test-256d_cosine_accuracy |
531
+ |:------:|:----:|:-------------:|:---------------:|:------------------------------------:|:-----------------------------------:|:-----------------------------------:|:-----------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|
532
+ | -1 | -1 | - | - | 0.8870 | 0.8923 | 0.8932 | 0.8857 | - | - | - | - |
533
+ | 0.1132 | 12 | 3.4225 | 0.2848 | 0.9895 | 0.9901 | 0.9899 | 0.9893 | - | - | - | - |
534
+ | 0.2264 | 24 | 0.8769 | 0.1916 | 0.9935 | 0.9945 | 0.9943 | 0.9937 | - | - | - | - |
535
+ | 0.3396 | 36 | 0.6888 | 0.1444 | 0.9967 | 0.9972 | 0.9969 | 0.9969 | - | - | - | - |
536
+ | 0.4528 | 48 | 0.6153 | 0.1289 | 0.9975 | 0.9978 | 0.9977 | 0.9977 | - | - | - | - |
537
+ | 0.5660 | 60 | 0.5698 | 0.1169 | 0.9981 | 0.9982 | 0.9981 | 0.9977 | - | - | - | - |
538
+ | 0.6792 | 72 | 0.5513 | - | 0.9976 | - | - | - | - | - | - | - |
539
+ | 0.1132 | 12 | 0.4944 | 0.1167 | 0.9977 | 0.9977 | 0.9977 | 0.9974 | - | - | - | - |
540
+ | 0.2264 | 24 | 0.4464 | 0.1220 | 0.9983 | 0.9983 | 0.9982 | 0.9981 | - | - | - | - |
541
+ | 0.3396 | 36 | 0.371 | 0.1116 | 0.9982 | 0.9982 | 0.9980 | 0.9976 | - | - | - | - |
542
+ | 0.4528 | 48 | 0.3369 | 0.1068 | 0.9983 | 0.9983 | 0.9983 | 0.9979 | - | - | - | - |
543
+ | 0.5660 | 60 | 0.3243 | 0.1006 | 0.9986 | 0.9986 | 0.9984 | 0.9981 | - | - | - | - |
544
+ | 0.6792 | 72 | 0.3895 | 0.0945 | 0.9987 | 0.9986 | 0.9984 | 0.9984 | - | - | - | - |
545
+ | 0.7925 | 84 | 0.4668 | 0.0908 | 0.9987 | 0.9987 | 0.9985 | 0.9982 | - | - | - | - |
546
+ | 0.9057 | 96 | 0.4319 | 0.0863 | 0.9988 | 0.9987 | 0.9987 | 0.9984 | - | - | - | - |
547
+ | -1 | -1 | - | - | - | - | - | - | 0.9987 | 0.9987 | 0.9987 | 0.9983 |
548
+
549
+
550
+ ### Framework Versions
551
+ - Python: 3.10.12
552
+ - Sentence Transformers: 4.2.0.dev0
553
+ - Transformers: 4.52.3
554
+ - PyTorch: 2.7.0+cu126
555
+ - Accelerate: 1.7.0
556
+ - Datasets: 3.6.0
557
+ - Tokenizers: 0.21.1
558
+
559
+ ## Citation
560
+
561
+ ### BibTeX
562
+
563
+ #### Sentence Transformers
564
+ ```bibtex
565
+ @inproceedings{reimers-2019-sentence-bert,
566
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
567
+ author = "Reimers, Nils and Gurevych, Iryna",
568
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
569
+ month = "11",
570
+ year = "2019",
571
+ publisher = "Association for Computational Linguistics",
572
+ url = "https://arxiv.org/abs/1908.10084",
573
+ }
574
+ ```
575
+
576
+ #### MatryoshkaLoss
577
+ ```bibtex
578
+ @misc{kusupati2024matryoshka,
579
+ title={Matryoshka Representation Learning},
580
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
581
+ year={2024},
582
+ eprint={2205.13147},
583
+ archivePrefix={arXiv},
584
+ primaryClass={cs.LG}
585
+ }
586
+ ```
587
+
588
+ #### CachedMultipleNegativesRankingLoss
589
+ ```bibtex
590
+ @misc{gao2021scaling,
591
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
592
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
593
+ year={2021},
594
+ eprint={2101.06983},
595
+ archivePrefix={arXiv},
596
+ primaryClass={cs.LG}
597
+ }
598
+ ```
599
+
600
+ <!--
601
+ ## Glossary
602
+
603
+ *Clearly define terms in order to be accessible across audiences.*
604
+ -->
605
+
606
+ <!--
607
+ ## Model Card Authors
608
+
609
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
610
+ -->
611
+
612
+ <!--
613
+ ## Model Card Contact
614
+
615
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
616
+ -->
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.jinja ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
27
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
28
+ {%- elif message.role == "assistant" %}
29
+ {%- set content = message.content %}
30
+ {%- set reasoning_content = '' %}
31
+ {%- if message.reasoning_content is defined and message.reasoning_content is not none %}
32
+ {%- set reasoning_content = message.reasoning_content %}
33
+ {%- else %}
34
+ {%- if '</think>' in message.content %}
35
+ {%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
36
+ {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
37
+ {%- endif %}
38
+ {%- endif %}
39
+ {%- if loop.index0 > ns.last_query_index %}
40
+ {%- if loop.last or (not loop.last and reasoning_content) %}
41
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
42
+ {%- else %}
43
+ {{- '<|im_start|>' + message.role + '\n' + content }}
44
+ {%- endif %}
45
+ {%- else %}
46
+ {{- '<|im_start|>' + message.role + '\n' + content }}
47
+ {%- endif %}
48
+ {%- if message.tool_calls %}
49
+ {%- for tool_call in message.tool_calls %}
50
+ {%- if (loop.first and content) or (not loop.first) %}
51
+ {{- '\n' }}
52
+ {%- endif %}
53
+ {%- if tool_call.function %}
54
+ {%- set tool_call = tool_call.function %}
55
+ {%- endif %}
56
+ {{- '<tool_call>\n{"name": "' }}
57
+ {{- tool_call.name }}
58
+ {{- '", "arguments": ' }}
59
+ {%- if tool_call.arguments is string %}
60
+ {{- tool_call.arguments }}
61
+ {%- else %}
62
+ {{- tool_call.arguments | tojson }}
63
+ {%- endif %}
64
+ {{- '}\n</tool_call>' }}
65
+ {%- endfor %}
66
+ {%- endif %}
67
+ {{- '<|im_end|>\n' }}
68
+ {%- elif message.role == "tool" %}
69
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
70
+ {{- '<|im_start|>user' }}
71
+ {%- endif %}
72
+ {{- '\n<tool_response>\n' }}
73
+ {{- message.content }}
74
+ {{- '\n</tool_response>' }}
75
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
76
+ {{- '<|im_end|>\n' }}
77
+ {%- endif %}
78
+ {%- endif %}
79
+ {%- endfor %}
80
+ {%- if add_generation_prompt %}
81
+ {{- '<|im_start|>assistant\n' }}
82
+ {%- if enable_thinking is defined and enable_thinking is false %}
83
+ {{- '<think>\n\n</think>\n\n' }}
84
+ {%- endif %}
85
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.52.3",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151669
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "prompts": {
3
+ "query": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
4
+ "document": ""
5
+ },
6
+ "default_prompt_name": null,
7
+ "similarity_fn_name": "cosine",
8
+ "__version__": {
9
+ "sentence_transformers": "4.2.0.dev0",
10
+ "transformers": "4.52.3",
11
+ "pytorch": "2.7.0+cu126"
12
+ }
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe683b4c4ea8dbc0e020871f996d11ca60386b1ddb25f1d6c327b025e8a1a02d
3
+ size 2383139480
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32768,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f45684bb3bd50e1eb753e6bc438efc14329c293af236ecd331667b46657a3cc
3
+ size 11423973
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "split_special_tokens": false,
237
+ "tokenizer_class": "Qwen2Tokenizer",
238
+ "unk_token": null
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff