Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +616 -0
- added_tokens.json +28 -0
- chat_template.jinja +85 -0
- config.json +30 -0
- config_sentence_transformers.json +13 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tr
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:215676
|
11 |
+
- loss:MatryoshkaLoss
|
12 |
+
- loss:CachedMultipleNegativesRankingLoss
|
13 |
+
base_model: Qwen/Qwen3-Embedding-0.6B
|
14 |
+
widget:
|
15 |
+
- source_sentence: Ortak Havuz Tarifesi kapsamında her bir hat için aylık sabit ücret
|
16 |
+
25,5 TL olarak belirlenmiştir ve bu ücret KDV ile ÖİV dahil olarak hesaplanmıştır.
|
17 |
+
sentences:
|
18 |
+
- Vodafone'un Ortak Havuz Tarifesi, müşterilere ücretsiz olarak sunulmaktadır ve
|
19 |
+
herhangi bir sabit ücret talep edilmemektedir.
|
20 |
+
- Her bir hat için Ortak Havuz Tarifesi'nin aylık sabit ücreti, vergiler dahil 25,5
|
21 |
+
TL'dir.
|
22 |
+
- Geleceğin Karakartalı, Vodafone ve Beşiktaş JK'nin ortak çalışmasıyla genç futbol
|
23 |
+
yeteneklerini Türkiye çapında keşfetmeyi hedefleyen bir projedir.
|
24 |
+
- source_sentence: Taşınma durumunda, teknik altyapı eksikliği nedeniyle Vodafone
|
25 |
+
Evde Fiber İnternet hizmeti sağlanamazsa, cezai işlem uygulanmaz ve alternatif
|
26 |
+
hizmetlere geçiş yapılabilir.
|
27 |
+
sentences:
|
28 |
+
- Vodafone faturasız tarifelerinde, yenileme gününde yeterli bakiye bulunmuyorsa
|
29 |
+
içerikler yenilenmez, ancak daha önce yüklenen içerikler bakiye olmadan kullanılabilir.
|
30 |
+
- Vodafone Evde Fiber İnternet hizmeti taşınma sırasında altyapı eksikliği nedeniyle
|
31 |
+
sağlanamazsa, aboneye ceza uygulanır ve alternatif hizmet sunulmaz.
|
32 |
+
- Vodafone Evde Fiber İnternet hizmeti taşınma sırasında altyapı eksikliği nedeniyle
|
33 |
+
sağlanamazsa, aboneye cezai işlem uygulanmaz ve ADSL veya Fiber Hız hizmetine
|
34 |
+
geçiş yapılabilir.
|
35 |
+
- source_sentence: Tarife kapsamında sunulan dakika, SMS ve internet hakları, belirli
|
36 |
+
bir limitin aşılması durumunda ek paketlerle ücretlendirilir.
|
37 |
+
sentences:
|
38 |
+
- Vodafone'un tarifelerinde aşım durumunda ek paketler yerine ücretsiz kullanım
|
39 |
+
hakkı sunulmaktadır.
|
40 |
+
- Vodafone'un geçmiş kampanyalarında, Samsung Note 3 Neo en pahalı cihazlardan biri
|
41 |
+
olarak müşterilere sunulmuştur.
|
42 |
+
- Uyumlu 5 Tarifesi'nde verilen dakika, SMS ve internet hakları bittiğinde, ek paketler
|
43 |
+
devreye girerek avantajlı fiyatlarla ücretlendirme yapılır.
|
44 |
+
- source_sentence: Mobil numara taşınabilirliği olan ülkelerdeki Vodafone operatörlerine
|
45 |
+
yapılan aramalarda, diğer mobil operatörlerin prefikslerini içeren numaralar indirimli
|
46 |
+
tarifeden yararlanamaz.
|
47 |
+
sentences:
|
48 |
+
- Vodafone operatörlerine yapılan aramalarda, mobil numara taşınabilirliği olan
|
49 |
+
ülkelerdeki diğer operatörlerin prefikslerini içeren numaralar indirimli fiyatlara
|
50 |
+
dahil edilmez.
|
51 |
+
- Vodafone'un tarifelerinde ücretsiz pass paketi yer almazken, Her Şey Dahil Pasaport
|
52 |
+
paketi ücretli olarak sunulmaktadır.
|
53 |
+
- Dünya Küçük Kurumsal tarifesi, yurtdışı aramalar için tüm numaralara eşit fiyatlandırma
|
54 |
+
sunar ve prefiks kısıtlaması içermez.
|
55 |
+
- source_sentence: Vodafone hattınızın aktivasyonu sırasında eksik evraklarınızın
|
56 |
+
tamamlanması gerektiği belirtilmiştir. Hattınızın iptal olmaması için 3 gün içinde
|
57 |
+
Vodafone mağazasını ziyaret etmeniz önemlidir.
|
58 |
+
sentences:
|
59 |
+
- Vodafone, boşanmış annelerin çocuklarına gençlik tarifesi tanımlaması için kimlik
|
60 |
+
doğrulama ve kullanıcı tanımlama süreçlerini Cep Merkezlerinde gerçekleştirmektedir.
|
61 |
+
- Vodafone hattınızın aktivasyonu sırasında herhangi bir evrak eksikliği bulunmamaktadır.
|
62 |
+
Hattınız otomatik olarak aktif hale gelecektir.
|
63 |
+
- Vodafone hattınızın aktif hale gelebilmesi için eksik olan abonelik sözleşmesi
|
64 |
+
ve kimlik belgelerinizi tamamlamanız gerekmektedir. Bu işlemi 3 gün içinde Vodafone
|
65 |
+
mağazasında gerçekleştirebilirsiniz.
|
66 |
+
datasets:
|
67 |
+
- seroe/vodex-turkish-triplets-large
|
68 |
+
pipeline_tag: sentence-similarity
|
69 |
+
library_name: sentence-transformers
|
70 |
+
metrics:
|
71 |
+
- cosine_accuracy
|
72 |
+
model-index:
|
73 |
+
- name: Qwen3-Embedding-0.6B Türkçe Triplet Matryoshka
|
74 |
+
results:
|
75 |
+
- task:
|
76 |
+
type: triplet
|
77 |
+
name: Triplet
|
78 |
+
dataset:
|
79 |
+
name: tr triplet dev 1024d
|
80 |
+
type: tr-triplet-dev-1024d
|
81 |
+
metrics:
|
82 |
+
- type: cosine_accuracy
|
83 |
+
value: 0.998831570148468
|
84 |
+
name: Cosine Accuracy
|
85 |
+
- task:
|
86 |
+
type: triplet
|
87 |
+
name: Triplet
|
88 |
+
dataset:
|
89 |
+
name: tr triplet dev 768d
|
90 |
+
type: tr-triplet-dev-768d
|
91 |
+
metrics:
|
92 |
+
- type: cosine_accuracy
|
93 |
+
value: 0.9987481236457825
|
94 |
+
name: Cosine Accuracy
|
95 |
+
- task:
|
96 |
+
type: triplet
|
97 |
+
name: Triplet
|
98 |
+
dataset:
|
99 |
+
name: tr triplet dev 512d
|
100 |
+
type: tr-triplet-dev-512d
|
101 |
+
metrics:
|
102 |
+
- type: cosine_accuracy
|
103 |
+
value: 0.9986646771430969
|
104 |
+
name: Cosine Accuracy
|
105 |
+
- task:
|
106 |
+
type: triplet
|
107 |
+
name: Triplet
|
108 |
+
dataset:
|
109 |
+
name: tr triplet dev 256d
|
110 |
+
type: tr-triplet-dev-256d
|
111 |
+
metrics:
|
112 |
+
- type: cosine_accuracy
|
113 |
+
value: 0.9984142780303955
|
114 |
+
name: Cosine Accuracy
|
115 |
+
- task:
|
116 |
+
type: triplet
|
117 |
+
name: Triplet
|
118 |
+
dataset:
|
119 |
+
name: all nli test 1024d
|
120 |
+
type: all-nli-test-1024d
|
121 |
+
metrics:
|
122 |
+
- type: cosine_accuracy
|
123 |
+
value: 0.9987481236457825
|
124 |
+
name: Cosine Accuracy
|
125 |
+
- task:
|
126 |
+
type: triplet
|
127 |
+
name: Triplet
|
128 |
+
dataset:
|
129 |
+
name: all nli test 768d
|
130 |
+
type: all-nli-test-768d
|
131 |
+
metrics:
|
132 |
+
- type: cosine_accuracy
|
133 |
+
value: 0.9986646771430969
|
134 |
+
name: Cosine Accuracy
|
135 |
+
- task:
|
136 |
+
type: triplet
|
137 |
+
name: Triplet
|
138 |
+
dataset:
|
139 |
+
name: all nli test 512d
|
140 |
+
type: all-nli-test-512d
|
141 |
+
metrics:
|
142 |
+
- type: cosine_accuracy
|
143 |
+
value: 0.9986646771430969
|
144 |
+
name: Cosine Accuracy
|
145 |
+
- task:
|
146 |
+
type: triplet
|
147 |
+
name: Triplet
|
148 |
+
dataset:
|
149 |
+
name: all nli test 256d
|
150 |
+
type: all-nli-test-256d
|
151 |
+
metrics:
|
152 |
+
- type: cosine_accuracy
|
153 |
+
value: 0.99833083152771
|
154 |
+
name: Cosine Accuracy
|
155 |
+
---
|
156 |
+
|
157 |
+
# Qwen3-Embedding-0.6B Türkçe Triplet Matryoshka
|
158 |
+
|
159 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) on the [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
160 |
+
|
161 |
+
## Model Details
|
162 |
+
|
163 |
+
### Model Description
|
164 |
+
- **Model Type:** Sentence Transformer
|
165 |
+
- **Base model:** [Qwen/Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) <!-- at revision 744169034862c8eec56628663995004342e4e449 -->
|
166 |
+
- **Maximum Sequence Length:** 32768 tokens
|
167 |
+
- **Output Dimensionality:** 1024 dimensions
|
168 |
+
- **Similarity Function:** Cosine Similarity
|
169 |
+
- **Training Dataset:**
|
170 |
+
- [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large)
|
171 |
+
- **Language:** tr
|
172 |
+
- **License:** apache-2.0
|
173 |
+
|
174 |
+
### Model Sources
|
175 |
+
|
176 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
177 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
178 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
179 |
+
|
180 |
+
### Full Model Architecture
|
181 |
+
|
182 |
+
```
|
183 |
+
SentenceTransformer(
|
184 |
+
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: Qwen3Model
|
185 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
|
186 |
+
(2): Normalize()
|
187 |
+
)
|
188 |
+
```
|
189 |
+
|
190 |
+
## Usage
|
191 |
+
|
192 |
+
### Direct Usage (Sentence Transformers)
|
193 |
+
|
194 |
+
First install the Sentence Transformers library:
|
195 |
+
|
196 |
+
```bash
|
197 |
+
pip install -U sentence-transformers
|
198 |
+
```
|
199 |
+
|
200 |
+
Then you can load this model and run inference.
|
201 |
+
```python
|
202 |
+
from sentence_transformers import SentenceTransformer
|
203 |
+
|
204 |
+
# Download from the 🤗 Hub
|
205 |
+
model = SentenceTransformer("seroe/Qwen3-Embedding-0.6B-turkish-triplet-matryoshka-v2")
|
206 |
+
# Run inference
|
207 |
+
sentences = [
|
208 |
+
'Vodafone hattınızın aktivasyonu sırasında eksik evraklarınızın tamamlanması gerektiği belirtilmiştir. Hattınızın iptal olmaması için 3 gün içinde Vodafone mağazasını ziyaret etmeniz önemlidir.',
|
209 |
+
'Vodafone hattınızın aktif hale gelebilmesi için eksik olan abonelik sözleşmesi ve kimlik belgelerinizi tamamlamanız gerekmektedir. Bu işlemi 3 gün içinde Vodafone mağazasında gerçekleştirebilirsiniz.',
|
210 |
+
'Vodafone hattınızın aktivasyonu sırasında herhangi bir evrak eksikliği bulunmamaktadır. Hattınız otomatik olarak aktif hale gelecektir.',
|
211 |
+
]
|
212 |
+
embeddings = model.encode(sentences)
|
213 |
+
print(embeddings.shape)
|
214 |
+
# [3, 1024]
|
215 |
+
|
216 |
+
# Get the similarity scores for the embeddings
|
217 |
+
similarities = model.similarity(embeddings, embeddings)
|
218 |
+
print(similarities.shape)
|
219 |
+
# [3, 3]
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
### Direct Usage (Transformers)
|
224 |
+
|
225 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
226 |
+
|
227 |
+
</details>
|
228 |
+
-->
|
229 |
+
|
230 |
+
<!--
|
231 |
+
### Downstream Usage (Sentence Transformers)
|
232 |
+
|
233 |
+
You can finetune this model on your own dataset.
|
234 |
+
|
235 |
+
<details><summary>Click to expand</summary>
|
236 |
+
|
237 |
+
</details>
|
238 |
+
-->
|
239 |
+
|
240 |
+
<!--
|
241 |
+
### Out-of-Scope Use
|
242 |
+
|
243 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
244 |
+
-->
|
245 |
+
|
246 |
+
## Evaluation
|
247 |
+
|
248 |
+
### Metrics
|
249 |
+
|
250 |
+
#### Triplet
|
251 |
+
|
252 |
+
* Datasets: `tr-triplet-dev-1024d` and `all-nli-test-1024d`
|
253 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
|
254 |
+
```json
|
255 |
+
{
|
256 |
+
"truncate_dim": 1024
|
257 |
+
}
|
258 |
+
```
|
259 |
+
|
260 |
+
| Metric | tr-triplet-dev-1024d | all-nli-test-1024d |
|
261 |
+
|:--------------------|:---------------------|:-------------------|
|
262 |
+
| **cosine_accuracy** | **0.9988** | **0.9987** |
|
263 |
+
|
264 |
+
#### Triplet
|
265 |
+
|
266 |
+
* Datasets: `tr-triplet-dev-768d` and `all-nli-test-768d`
|
267 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
|
268 |
+
```json
|
269 |
+
{
|
270 |
+
"truncate_dim": 768
|
271 |
+
}
|
272 |
+
```
|
273 |
+
|
274 |
+
| Metric | tr-triplet-dev-768d | all-nli-test-768d |
|
275 |
+
|:--------------------|:--------------------|:------------------|
|
276 |
+
| **cosine_accuracy** | **0.9987** | **0.9987** |
|
277 |
+
|
278 |
+
#### Triplet
|
279 |
+
|
280 |
+
* Datasets: `tr-triplet-dev-512d` and `all-nli-test-512d`
|
281 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
|
282 |
+
```json
|
283 |
+
{
|
284 |
+
"truncate_dim": 512
|
285 |
+
}
|
286 |
+
```
|
287 |
+
|
288 |
+
| Metric | tr-triplet-dev-512d | all-nli-test-512d |
|
289 |
+
|:--------------------|:--------------------|:------------------|
|
290 |
+
| **cosine_accuracy** | **0.9987** | **0.9987** |
|
291 |
+
|
292 |
+
#### Triplet
|
293 |
+
|
294 |
+
* Datasets: `tr-triplet-dev-256d` and `all-nli-test-256d`
|
295 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) with these parameters:
|
296 |
+
```json
|
297 |
+
{
|
298 |
+
"truncate_dim": 256
|
299 |
+
}
|
300 |
+
```
|
301 |
+
|
302 |
+
| Metric | tr-triplet-dev-256d | all-nli-test-256d |
|
303 |
+
|:--------------------|:--------------------|:------------------|
|
304 |
+
| **cosine_accuracy** | **0.9984** | **0.9983** |
|
305 |
+
|
306 |
+
<!--
|
307 |
+
## Bias, Risks and Limitations
|
308 |
+
|
309 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
310 |
+
-->
|
311 |
+
|
312 |
+
<!--
|
313 |
+
### Recommendations
|
314 |
+
|
315 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
316 |
+
-->
|
317 |
+
|
318 |
+
## Training Details
|
319 |
+
|
320 |
+
### Training Dataset
|
321 |
+
|
322 |
+
#### vodex-turkish-triplets-large
|
323 |
+
|
324 |
+
* Dataset: [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) at [1fe9d63](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large/tree/1fe9d63490a69cb96da6b76f4bff1a43c48cbdee)
|
325 |
+
* Size: 215,676 training samples
|
326 |
+
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
|
327 |
+
* Approximate statistics based on the first 1000 samples:
|
328 |
+
| | query | positive | negative |
|
329 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
330 |
+
| type | string | string | string |
|
331 |
+
| details | <ul><li>min: 19 tokens</li><li>mean: 44.11 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 45.45 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 37.27 tokens</li><li>max: 76 tokens</li></ul> |
|
332 |
+
* Samples:
|
333 |
+
| query | positive | negative |
|
334 |
+
|:--------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
|
335 |
+
| <code>Vodafone'un Mobil Form Servisi, 12 Şubat 2021 itibarıyla yeni müşteri alımına kapatılmıştır.</code> | <code>12 Şubat 2021 tarihinden itibaren Vodafone'un Mobil Form Servisi yeni kullanıcılar için erişime kapatılmıştır.</code> | <code>Mobil Form Servisi, 2022 yılında yeni müşterilere açılmıştır ve aktif olarak kullanılmaktadır.</code> |
|
336 |
+
| <code>Paket, VOIP ve P2P gibi hizmetleri desteklemez ve cihazın 4.5G/3G ayarlarının yapılmış olması gereklidir.</code> | <code>Vodafone'un paketi, VOIP ve P2P hizmetlerini içermez ve cihazın 4.5G/3G bağlantı ayarlarının aktif olması gerekir.</code> | <code>Paket, VOIP ve P2P hizmetlerini tamamen destekler ve cihaz ayarlarına gerek olmadan kullanılabilir.</code> |
|
337 |
+
| <code>Vodafone'un bireysel esnaf tarifeleri, farklı meslek gruplarına özel paket seçenekleriyle geniş bir yelpaze sunar.</code> | <code>Bireysel esnaf tarifeleri, Vodafone tarafından çeşitli meslek gruplarına uygun paketlerle desteklenmektedir.</code> | <code>Vodafone'un bireysel esnaf tarifeleri, yalnızca belirli bir meslek grubuna hitap eder ve diğer meslekler için uygun değildir.</code> |
|
338 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
339 |
+
```json
|
340 |
+
{
|
341 |
+
"loss": "CachedMultipleNegativesRankingLoss",
|
342 |
+
"matryoshka_dims": [
|
343 |
+
1024,
|
344 |
+
768,
|
345 |
+
512,
|
346 |
+
256
|
347 |
+
],
|
348 |
+
"matryoshka_weights": [
|
349 |
+
1,
|
350 |
+
1,
|
351 |
+
1,
|
352 |
+
1
|
353 |
+
],
|
354 |
+
"n_dims_per_step": -1
|
355 |
+
}
|
356 |
+
```
|
357 |
+
|
358 |
+
### Evaluation Dataset
|
359 |
+
|
360 |
+
#### vodex-turkish-triplets-large
|
361 |
+
|
362 |
+
* Dataset: [vodex-turkish-triplets-large](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large) at [1fe9d63](https://huggingface.co/datasets/seroe/vodex-turkish-triplets-large/tree/1fe9d63490a69cb96da6b76f4bff1a43c48cbdee)
|
363 |
+
* Size: 11,982 evaluation samples
|
364 |
+
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
|
365 |
+
* Approximate statistics based on the first 1000 samples:
|
366 |
+
| | query | positive | negative |
|
367 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
368 |
+
| type | string | string | string |
|
369 |
+
| details | <ul><li>min: 23 tokens</li><li>mean: 44.51 tokens</li><li>max: 97 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 45.89 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 37.23 tokens</li><li>max: 89 tokens</li></ul> |
|
370 |
+
* Samples:
|
371 |
+
| query | positive | negative |
|
372 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
373 |
+
| <code>Vodafone'un 'Yarına Hazır Cihaz Kampanyaları' kapsamında farklı marka ve modellerde cihazlar, çeşitli depolama seçenekleri ve renk alternatifleriyle sunulmaktadır.</code> | <code>Vodafone'un cihaz kampanyaları, geniş ürün yelpazesiyle farklı depolama kapasiteleri ve renk seçenekleri sunarak kullanıcıların ihtiyaçlarına hitap etmektedir.</code> | <code>Vodafone'un cihaz kampanyaları yalnızca belirli bir marka ve modelle sınırlıdır, diğer seçenekler sunulmamaktadır.</code> |
|
374 |
+
| <code>Devreden ve duran tarifeler, kullanıcıların kullanılmayan internet haklarını bir sonraki döneme taşımasına olanak tanır ve ek paketlerle bu haklar genişletilebilir.</code> | <code>Kullanıcılar, devreden ve duran tarifeler sayesinde kullanılmayan internet haklarını bir sonraki aya aktarabilir ve ek paketlerle bu haklarını artırabilir.</code> | <code>Devreden ve duran tarifeler, kullanıcıların internet haklarını bir sonraki döneme taşımasına izin vermez, yalnızca mevcut dönemde kullanım sağlar.</code> |
|
375 |
+
| <code>Cebinize Uyan İnternet kampanyası, numara taşıma, yeni hat tesisi veya tarifeler arası geçiş yapan abonelere otomatik olarak tanımlanır. Bu haklar, diğer promosyonlardan sonra kullanılabilir.</code> | <code>Vodafone'un kampanyası, numara taşıma, yeni hat açma veya tarifeler arası geçiş yapan abonelere otomatik olarak tanımlanır ve kullanım sırası diğer promosyonlardan sonra gelir.</code> | <code>Evcil hayvan sahiplenme kampanyasında, yeni bir evcil hayvan edinen kişilere ücretsiz mama ve bakım hizmeti sunulur.</code> |
|
376 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
377 |
+
```json
|
378 |
+
{
|
379 |
+
"loss": "CachedMultipleNegativesRankingLoss",
|
380 |
+
"matryoshka_dims": [
|
381 |
+
1024,
|
382 |
+
768,
|
383 |
+
512,
|
384 |
+
256
|
385 |
+
],
|
386 |
+
"matryoshka_weights": [
|
387 |
+
1,
|
388 |
+
1,
|
389 |
+
1,
|
390 |
+
1
|
391 |
+
],
|
392 |
+
"n_dims_per_step": -1
|
393 |
+
}
|
394 |
+
```
|
395 |
+
|
396 |
+
### Training Hyperparameters
|
397 |
+
#### Non-Default Hyperparameters
|
398 |
+
|
399 |
+
- `eval_strategy`: steps
|
400 |
+
- `per_device_train_batch_size`: 2048
|
401 |
+
- `per_device_eval_batch_size`: 256
|
402 |
+
- `weight_decay`: 0.01
|
403 |
+
- `num_train_epochs`: 1
|
404 |
+
- `lr_scheduler_type`: cosine
|
405 |
+
- `warmup_ratio`: 0.05
|
406 |
+
- `save_only_model`: True
|
407 |
+
- `bf16`: True
|
408 |
+
- `batch_sampler`: no_duplicates
|
409 |
+
|
410 |
+
#### All Hyperparameters
|
411 |
+
<details><summary>Click to expand</summary>
|
412 |
+
|
413 |
+
- `overwrite_output_dir`: False
|
414 |
+
- `do_predict`: False
|
415 |
+
- `eval_strategy`: steps
|
416 |
+
- `prediction_loss_only`: True
|
417 |
+
- `per_device_train_batch_size`: 2048
|
418 |
+
- `per_device_eval_batch_size`: 256
|
419 |
+
- `per_gpu_train_batch_size`: None
|
420 |
+
- `per_gpu_eval_batch_size`: None
|
421 |
+
- `gradient_accumulation_steps`: 1
|
422 |
+
- `eval_accumulation_steps`: None
|
423 |
+
- `torch_empty_cache_steps`: None
|
424 |
+
- `learning_rate`: 5e-05
|
425 |
+
- `weight_decay`: 0.01
|
426 |
+
- `adam_beta1`: 0.9
|
427 |
+
- `adam_beta2`: 0.999
|
428 |
+
- `adam_epsilon`: 1e-08
|
429 |
+
- `max_grad_norm`: 1.0
|
430 |
+
- `num_train_epochs`: 1
|
431 |
+
- `max_steps`: -1
|
432 |
+
- `lr_scheduler_type`: cosine
|
433 |
+
- `lr_scheduler_kwargs`: {}
|
434 |
+
- `warmup_ratio`: 0.05
|
435 |
+
- `warmup_steps`: 0
|
436 |
+
- `log_level`: passive
|
437 |
+
- `log_level_replica`: warning
|
438 |
+
- `log_on_each_node`: True
|
439 |
+
- `logging_nan_inf_filter`: True
|
440 |
+
- `save_safetensors`: True
|
441 |
+
- `save_on_each_node`: False
|
442 |
+
- `save_only_model`: True
|
443 |
+
- `restore_callback_states_from_checkpoint`: False
|
444 |
+
- `no_cuda`: False
|
445 |
+
- `use_cpu`: False
|
446 |
+
- `use_mps_device`: False
|
447 |
+
- `seed`: 42
|
448 |
+
- `data_seed`: None
|
449 |
+
- `jit_mode_eval`: False
|
450 |
+
- `use_ipex`: False
|
451 |
+
- `bf16`: True
|
452 |
+
- `fp16`: False
|
453 |
+
- `fp16_opt_level`: O1
|
454 |
+
- `half_precision_backend`: auto
|
455 |
+
- `bf16_full_eval`: False
|
456 |
+
- `fp16_full_eval`: False
|
457 |
+
- `tf32`: None
|
458 |
+
- `local_rank`: 0
|
459 |
+
- `ddp_backend`: None
|
460 |
+
- `tpu_num_cores`: None
|
461 |
+
- `tpu_metrics_debug`: False
|
462 |
+
- `debug`: []
|
463 |
+
- `dataloader_drop_last`: False
|
464 |
+
- `dataloader_num_workers`: 0
|
465 |
+
- `dataloader_prefetch_factor`: None
|
466 |
+
- `past_index`: -1
|
467 |
+
- `disable_tqdm`: False
|
468 |
+
- `remove_unused_columns`: True
|
469 |
+
- `label_names`: None
|
470 |
+
- `load_best_model_at_end`: False
|
471 |
+
- `ignore_data_skip`: False
|
472 |
+
- `fsdp`: []
|
473 |
+
- `fsdp_min_num_params`: 0
|
474 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
475 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
476 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
477 |
+
- `deepspeed`: None
|
478 |
+
- `label_smoothing_factor`: 0.0
|
479 |
+
- `optim`: adamw_torch
|
480 |
+
- `optim_args`: None
|
481 |
+
- `adafactor`: False
|
482 |
+
- `group_by_length`: False
|
483 |
+
- `length_column_name`: length
|
484 |
+
- `ddp_find_unused_parameters`: None
|
485 |
+
- `ddp_bucket_cap_mb`: None
|
486 |
+
- `ddp_broadcast_buffers`: False
|
487 |
+
- `dataloader_pin_memory`: True
|
488 |
+
- `dataloader_persistent_workers`: False
|
489 |
+
- `skip_memory_metrics`: True
|
490 |
+
- `use_legacy_prediction_loop`: False
|
491 |
+
- `push_to_hub`: False
|
492 |
+
- `resume_from_checkpoint`: None
|
493 |
+
- `hub_model_id`: None
|
494 |
+
- `hub_strategy`: every_save
|
495 |
+
- `hub_private_repo`: None
|
496 |
+
- `hub_always_push`: False
|
497 |
+
- `gradient_checkpointing`: False
|
498 |
+
- `gradient_checkpointing_kwargs`: None
|
499 |
+
- `include_inputs_for_metrics`: False
|
500 |
+
- `include_for_metrics`: []
|
501 |
+
- `eval_do_concat_batches`: True
|
502 |
+
- `fp16_backend`: auto
|
503 |
+
- `push_to_hub_model_id`: None
|
504 |
+
- `push_to_hub_organization`: None
|
505 |
+
- `mp_parameters`:
|
506 |
+
- `auto_find_batch_size`: False
|
507 |
+
- `full_determinism`: False
|
508 |
+
- `torchdynamo`: None
|
509 |
+
- `ray_scope`: last
|
510 |
+
- `ddp_timeout`: 1800
|
511 |
+
- `torch_compile`: False
|
512 |
+
- `torch_compile_backend`: None
|
513 |
+
- `torch_compile_mode`: None
|
514 |
+
- `include_tokens_per_second`: False
|
515 |
+
- `include_num_input_tokens_seen`: False
|
516 |
+
- `neftune_noise_alpha`: None
|
517 |
+
- `optim_target_modules`: None
|
518 |
+
- `batch_eval_metrics`: False
|
519 |
+
- `eval_on_start`: False
|
520 |
+
- `use_liger_kernel`: False
|
521 |
+
- `eval_use_gather_object`: False
|
522 |
+
- `average_tokens_across_devices`: False
|
523 |
+
- `prompts`: None
|
524 |
+
- `batch_sampler`: no_duplicates
|
525 |
+
- `multi_dataset_batch_sampler`: proportional
|
526 |
+
|
527 |
+
</details>
|
528 |
+
|
529 |
+
### Training Logs
|
530 |
+
| Epoch | Step | Training Loss | Validation Loss | tr-triplet-dev-1024d_cosine_accuracy | tr-triplet-dev-768d_cosine_accuracy | tr-triplet-dev-512d_cosine_accuracy | tr-triplet-dev-256d_cosine_accuracy | all-nli-test-1024d_cosine_accuracy | all-nli-test-768d_cosine_accuracy | all-nli-test-512d_cosine_accuracy | all-nli-test-256d_cosine_accuracy |
|
531 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------------------:|:-----------------------------------:|:-----------------------------------:|:-----------------------------------:|:----------------------------------:|:---------------------------------:|:---------------------------------:|:---------------------------------:|
|
532 |
+
| -1 | -1 | - | - | 0.8870 | 0.8923 | 0.8932 | 0.8857 | - | - | - | - |
|
533 |
+
| 0.1132 | 12 | 3.4225 | 0.2848 | 0.9895 | 0.9901 | 0.9899 | 0.9893 | - | - | - | - |
|
534 |
+
| 0.2264 | 24 | 0.8769 | 0.1916 | 0.9935 | 0.9945 | 0.9943 | 0.9937 | - | - | - | - |
|
535 |
+
| 0.3396 | 36 | 0.6888 | 0.1444 | 0.9967 | 0.9972 | 0.9969 | 0.9969 | - | - | - | - |
|
536 |
+
| 0.4528 | 48 | 0.6153 | 0.1289 | 0.9975 | 0.9978 | 0.9977 | 0.9977 | - | - | - | - |
|
537 |
+
| 0.5660 | 60 | 0.5698 | 0.1169 | 0.9981 | 0.9982 | 0.9981 | 0.9977 | - | - | - | - |
|
538 |
+
| 0.6792 | 72 | 0.5513 | - | 0.9976 | - | - | - | - | - | - | - |
|
539 |
+
| 0.1132 | 12 | 0.4944 | 0.1167 | 0.9977 | 0.9977 | 0.9977 | 0.9974 | - | - | - | - |
|
540 |
+
| 0.2264 | 24 | 0.4464 | 0.1220 | 0.9983 | 0.9983 | 0.9982 | 0.9981 | - | - | - | - |
|
541 |
+
| 0.3396 | 36 | 0.371 | 0.1116 | 0.9982 | 0.9982 | 0.9980 | 0.9976 | - | - | - | - |
|
542 |
+
| 0.4528 | 48 | 0.3369 | 0.1068 | 0.9983 | 0.9983 | 0.9983 | 0.9979 | - | - | - | - |
|
543 |
+
| 0.5660 | 60 | 0.3243 | 0.1006 | 0.9986 | 0.9986 | 0.9984 | 0.9981 | - | - | - | - |
|
544 |
+
| 0.6792 | 72 | 0.3895 | 0.0945 | 0.9987 | 0.9986 | 0.9984 | 0.9984 | - | - | - | - |
|
545 |
+
| 0.7925 | 84 | 0.4668 | 0.0908 | 0.9987 | 0.9987 | 0.9985 | 0.9982 | - | - | - | - |
|
546 |
+
| 0.9057 | 96 | 0.4319 | 0.0863 | 0.9988 | 0.9987 | 0.9987 | 0.9984 | - | - | - | - |
|
547 |
+
| -1 | -1 | - | - | - | - | - | - | 0.9987 | 0.9987 | 0.9987 | 0.9983 |
|
548 |
+
|
549 |
+
|
550 |
+
### Framework Versions
|
551 |
+
- Python: 3.10.12
|
552 |
+
- Sentence Transformers: 4.2.0.dev0
|
553 |
+
- Transformers: 4.52.3
|
554 |
+
- PyTorch: 2.7.0+cu126
|
555 |
+
- Accelerate: 1.7.0
|
556 |
+
- Datasets: 3.6.0
|
557 |
+
- Tokenizers: 0.21.1
|
558 |
+
|
559 |
+
## Citation
|
560 |
+
|
561 |
+
### BibTeX
|
562 |
+
|
563 |
+
#### Sentence Transformers
|
564 |
+
```bibtex
|
565 |
+
@inproceedings{reimers-2019-sentence-bert,
|
566 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
567 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
568 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
569 |
+
month = "11",
|
570 |
+
year = "2019",
|
571 |
+
publisher = "Association for Computational Linguistics",
|
572 |
+
url = "https://arxiv.org/abs/1908.10084",
|
573 |
+
}
|
574 |
+
```
|
575 |
+
|
576 |
+
#### MatryoshkaLoss
|
577 |
+
```bibtex
|
578 |
+
@misc{kusupati2024matryoshka,
|
579 |
+
title={Matryoshka Representation Learning},
|
580 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
581 |
+
year={2024},
|
582 |
+
eprint={2205.13147},
|
583 |
+
archivePrefix={arXiv},
|
584 |
+
primaryClass={cs.LG}
|
585 |
+
}
|
586 |
+
```
|
587 |
+
|
588 |
+
#### CachedMultipleNegativesRankingLoss
|
589 |
+
```bibtex
|
590 |
+
@misc{gao2021scaling,
|
591 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
592 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
593 |
+
year={2021},
|
594 |
+
eprint={2101.06983},
|
595 |
+
archivePrefix={arXiv},
|
596 |
+
primaryClass={cs.LG}
|
597 |
+
}
|
598 |
+
```
|
599 |
+
|
600 |
+
<!--
|
601 |
+
## Glossary
|
602 |
+
|
603 |
+
*Clearly define terms in order to be accessible across audiences.*
|
604 |
+
-->
|
605 |
+
|
606 |
+
<!--
|
607 |
+
## Model Card Authors
|
608 |
+
|
609 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
610 |
+
-->
|
611 |
+
|
612 |
+
<!--
|
613 |
+
## Model Card Contact
|
614 |
+
|
615 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
616 |
+
-->
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
27 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
28 |
+
{%- elif message.role == "assistant" %}
|
29 |
+
{%- set content = message.content %}
|
30 |
+
{%- set reasoning_content = '' %}
|
31 |
+
{%- if message.reasoning_content is defined and message.reasoning_content is not none %}
|
32 |
+
{%- set reasoning_content = message.reasoning_content %}
|
33 |
+
{%- else %}
|
34 |
+
{%- if '</think>' in message.content %}
|
35 |
+
{%- set content = message.content.split('</think>')[-1].lstrip('\n') %}
|
36 |
+
{%- set reasoning_content = message.content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
37 |
+
{%- endif %}
|
38 |
+
{%- endif %}
|
39 |
+
{%- if loop.index0 > ns.last_query_index %}
|
40 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
41 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
42 |
+
{%- else %}
|
43 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
44 |
+
{%- endif %}
|
45 |
+
{%- else %}
|
46 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
47 |
+
{%- endif %}
|
48 |
+
{%- if message.tool_calls %}
|
49 |
+
{%- for tool_call in message.tool_calls %}
|
50 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
51 |
+
{{- '\n' }}
|
52 |
+
{%- endif %}
|
53 |
+
{%- if tool_call.function %}
|
54 |
+
{%- set tool_call = tool_call.function %}
|
55 |
+
{%- endif %}
|
56 |
+
{{- '<tool_call>\n{"name": "' }}
|
57 |
+
{{- tool_call.name }}
|
58 |
+
{{- '", "arguments": ' }}
|
59 |
+
{%- if tool_call.arguments is string %}
|
60 |
+
{{- tool_call.arguments }}
|
61 |
+
{%- else %}
|
62 |
+
{{- tool_call.arguments | tojson }}
|
63 |
+
{%- endif %}
|
64 |
+
{{- '}\n</tool_call>' }}
|
65 |
+
{%- endfor %}
|
66 |
+
{%- endif %}
|
67 |
+
{{- '<|im_end|>\n' }}
|
68 |
+
{%- elif message.role == "tool" %}
|
69 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
70 |
+
{{- '<|im_start|>user' }}
|
71 |
+
{%- endif %}
|
72 |
+
{{- '\n<tool_response>\n' }}
|
73 |
+
{{- message.content }}
|
74 |
+
{{- '\n</tool_response>' }}
|
75 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
76 |
+
{{- '<|im_end|>\n' }}
|
77 |
+
{%- endif %}
|
78 |
+
{%- endif %}
|
79 |
+
{%- endfor %}
|
80 |
+
{%- if add_generation_prompt %}
|
81 |
+
{{- '<|im_start|>assistant\n' }}
|
82 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
83 |
+
{{- '<think>\n\n</think>\n\n' }}
|
84 |
+
{%- endif %}
|
85 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3Model"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": true,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.52.3",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151669
|
30 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"prompts": {
|
3 |
+
"query": "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery:",
|
4 |
+
"document": ""
|
5 |
+
},
|
6 |
+
"default_prompt_name": null,
|
7 |
+
"similarity_fn_name": "cosine",
|
8 |
+
"__version__": {
|
9 |
+
"sentence_transformers": "4.2.0.dev0",
|
10 |
+
"transformers": "4.52.3",
|
11 |
+
"pytorch": "2.7.0+cu126"
|
12 |
+
}
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe683b4c4ea8dbc0e020871f996d11ca60386b1ddb25f1d6c327b025e8a1a02d
|
3 |
+
size 2383139480
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 32768,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f45684bb3bd50e1eb753e6bc438efc14329c293af236ecd331667b46657a3cc
|
3 |
+
size 11423973
|
tokenizer_config.json
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"split_special_tokens": false,
|
237 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
238 |
+
"unk_token": null
|
239 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|