seroe commited on
Commit
132adf2
·
verified ·
1 Parent(s): 36f84c8

Add new CrossEncoder model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - cross-encoder
8
+ - generated_from_trainer
9
+ - dataset_size:89964
10
+ - loss:CachedMultipleNegativesRankingLoss
11
+ base_model: cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
12
+ datasets:
13
+ - seroe/vodex-turkish-reranker-triplets
14
+ pipeline_tag: text-ranking
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - map
18
+ - mrr@10
19
+ - ndcg@10
20
+ model-index:
21
+ - name: cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
22
+ results:
23
+ - task:
24
+ type: cross-encoder-reranking
25
+ name: Cross Encoder Reranking
26
+ dataset:
27
+ name: val hard
28
+ type: val-hard
29
+ metrics:
30
+ - type: map
31
+ value: 0.6093
32
+ name: Map
33
+ - type: mrr@10
34
+ value: 0.6085
35
+ name: Mrr@10
36
+ - type: ndcg@10
37
+ value: 0.6994
38
+ name: Ndcg@10
39
+ - task:
40
+ type: cross-encoder-reranking
41
+ name: Cross Encoder Reranking
42
+ dataset:
43
+ name: test hard
44
+ type: test-hard
45
+ metrics:
46
+ - type: map
47
+ value: 0.6085
48
+ name: Map
49
+ - type: mrr@10
50
+ value: 0.6077
51
+ name: Mrr@10
52
+ - type: ndcg@10
53
+ value: 0.6987
54
+ name: Ndcg@10
55
+ ---
56
+
57
+ # cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
58
+
59
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) on the [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
60
+
61
+ ## Model Details
62
+
63
+ ### Model Description
64
+ - **Model Type:** Cross Encoder
65
+ - **Base model:** [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) <!-- at revision 1427fd652930e4ba29e8149678df786c240d8825 -->
66
+ - **Maximum Sequence Length:** 512 tokens
67
+ - **Number of Output Labels:** 1 label
68
+ - **Training Dataset:**
69
+ - [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets)
70
+ - **Language:** tr
71
+ - **License:** apache-2.0
72
+
73
+ ### Model Sources
74
+
75
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
76
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
77
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
78
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import CrossEncoder
93
+
94
+ # Download from the 🤗 Hub
95
+ model = CrossEncoder("seroe/mmarco-mMiniLMv2-L12-H384-v1-turkish-reranker-triplet")
96
+ # Get scores for pairs of texts
97
+ pairs = [
98
+ ['Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.'],
99
+ ['Kampanya süresince internet hızı nasıl değişebilir?', 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.'],
100
+ ["Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?", "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir."],
101
+ ['Taahhüt süresi dolmadan internet hizmeti iptal edilirse ne olur?', 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.'],
102
+ ['Aylık 15 GB ek paketini nereden satın alabilirim?', 'Bu ek paketi almak için hangi kanalları kullanabilirim?'],
103
+ ]
104
+ scores = model.predict(pairs)
105
+ print(scores.shape)
106
+ # (5,)
107
+
108
+ # Or rank different texts based on similarity to a single text
109
+ ranks = model.rank(
110
+ 'Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?',
111
+ [
112
+ 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.',
113
+ 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.',
114
+ "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.",
115
+ 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.',
116
+ 'Bu ek paketi almak için hangi kanalları kullanabilirim?',
117
+ ]
118
+ )
119
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
120
+ ```
121
+
122
+ <!--
123
+ ### Direct Usage (Transformers)
124
+
125
+ <details><summary>Click to see the direct usage in Transformers</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Downstream Usage (Sentence Transformers)
132
+
133
+ You can finetune this model on your own dataset.
134
+
135
+ <details><summary>Click to expand</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Out-of-Scope Use
142
+
143
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
144
+ -->
145
+
146
+ ## Evaluation
147
+
148
+ ### Metrics
149
+
150
+ #### Cross Encoder Reranking
151
+
152
+ * Datasets: `val-hard` and `test-hard`
153
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
154
+ ```json
155
+ {
156
+ "at_k": 10,
157
+ "always_rerank_positives": true
158
+ }
159
+ ```
160
+
161
+ | Metric | val-hard | test-hard |
162
+ |:------------|:---------------------|:---------------------|
163
+ | map | 0.6093 (-0.0246) | 0.6085 (-0.0178) |
164
+ | mrr@10 | 0.6085 (-0.0254) | 0.6077 (-0.0186) |
165
+ | **ndcg@10** | **0.6994 (+0.0641)** | **0.6987 (+0.0705)** |
166
+
167
+ <!--
168
+ ## Bias, Risks and Limitations
169
+
170
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
171
+ -->
172
+
173
+ <!--
174
+ ### Recommendations
175
+
176
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
177
+ -->
178
+
179
+ ## Training Details
180
+
181
+ ### Training Dataset
182
+
183
+ #### vodex-turkish-reranker-triplets
184
+
185
+ * Dataset: [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) at [ca7d206](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets/tree/ca7d2063ad4fec15fbf739835ab6926e051950c0)
186
+ * Size: 89,964 training samples
187
+ * Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
188
+ * Approximate statistics based on the first 1000 samples:
189
+ | | query | positive | negative |
190
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
191
+ | type | string | string | string |
192
+ | details | <ul><li>min: 20 characters</li><li>mean: 57.83 characters</li><li>max: 112 characters</li></ul> | <ul><li>min: 35 characters</li><li>mean: 92.19 characters</li><li>max: 221 characters</li></ul> | <ul><li>min: 31 characters</li><li>mean: 78.41 characters</li><li>max: 143 characters</li></ul> |
193
+ * Samples:
194
+ | query | positive | negative |
195
+ |:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
196
+ | <code>Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?</code> | <code>Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.</code> | <code>Faturasız tarifelerde yurtdışı mesaj ücretleri 10 kuruş olarak uygulanmaktadır.</code> |
197
+ | <code>Kampanya süresince internet hızı nasıl değişebilir?</code> | <code>Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.</code> | <code>Kampanya süresince internet hızı sabit kalır ve değişiklik yapılamaz.</code> |
198
+ | <code>Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?</code> | <code>Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.</code> | <code>Vodafone tarifelerinde KDV ve ÖİV, abonelerin talep etmesi durumunda eklenmektedir.</code> |
199
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
200
+ ```json
201
+ {
202
+ "scale": 10.0,
203
+ "num_negatives": 4,
204
+ "activation_fn": "torch.nn.modules.activation.Sigmoid",
205
+ "mini_batch_size": 32
206
+ }
207
+ ```
208
+
209
+ ### Training Hyperparameters
210
+ #### Non-Default Hyperparameters
211
+
212
+ - `eval_strategy`: steps
213
+ - `per_device_train_batch_size`: 1024
214
+ - `per_device_eval_batch_size`: 1024
215
+ - `learning_rate`: 5e-07
216
+ - `weight_decay`: 0.1
217
+ - `max_grad_norm`: 0.8
218
+ - `warmup_ratio`: 0.25
219
+ - `bf16`: True
220
+ - `dataloader_num_workers`: 8
221
+ - `load_best_model_at_end`: True
222
+ - `group_by_length`: True
223
+ - `batch_sampler`: no_duplicates
224
+
225
+ #### All Hyperparameters
226
+ <details><summary>Click to expand</summary>
227
+
228
+ - `overwrite_output_dir`: False
229
+ - `do_predict`: False
230
+ - `eval_strategy`: steps
231
+ - `prediction_loss_only`: True
232
+ - `per_device_train_batch_size`: 1024
233
+ - `per_device_eval_batch_size`: 1024
234
+ - `per_gpu_train_batch_size`: None
235
+ - `per_gpu_eval_batch_size`: None
236
+ - `gradient_accumulation_steps`: 1
237
+ - `eval_accumulation_steps`: None
238
+ - `torch_empty_cache_steps`: None
239
+ - `learning_rate`: 5e-07
240
+ - `weight_decay`: 0.1
241
+ - `adam_beta1`: 0.9
242
+ - `adam_beta2`: 0.999
243
+ - `adam_epsilon`: 1e-08
244
+ - `max_grad_norm`: 0.8
245
+ - `num_train_epochs`: 3
246
+ - `max_steps`: -1
247
+ - `lr_scheduler_type`: linear
248
+ - `lr_scheduler_kwargs`: {}
249
+ - `warmup_ratio`: 0.25
250
+ - `warmup_steps`: 0
251
+ - `log_level`: passive
252
+ - `log_level_replica`: warning
253
+ - `log_on_each_node`: True
254
+ - `logging_nan_inf_filter`: True
255
+ - `save_safetensors`: True
256
+ - `save_on_each_node`: False
257
+ - `save_only_model`: False
258
+ - `restore_callback_states_from_checkpoint`: False
259
+ - `no_cuda`: False
260
+ - `use_cpu`: False
261
+ - `use_mps_device`: False
262
+ - `seed`: 42
263
+ - `data_seed`: None
264
+ - `jit_mode_eval`: False
265
+ - `use_ipex`: False
266
+ - `bf16`: True
267
+ - `fp16`: False
268
+ - `fp16_opt_level`: O1
269
+ - `half_precision_backend`: auto
270
+ - `bf16_full_eval`: False
271
+ - `fp16_full_eval`: False
272
+ - `tf32`: None
273
+ - `local_rank`: 0
274
+ - `ddp_backend`: None
275
+ - `tpu_num_cores`: None
276
+ - `tpu_metrics_debug`: False
277
+ - `debug`: []
278
+ - `dataloader_drop_last`: False
279
+ - `dataloader_num_workers`: 8
280
+ - `dataloader_prefetch_factor`: None
281
+ - `past_index`: -1
282
+ - `disable_tqdm`: False
283
+ - `remove_unused_columns`: True
284
+ - `label_names`: None
285
+ - `load_best_model_at_end`: True
286
+ - `ignore_data_skip`: False
287
+ - `fsdp`: []
288
+ - `fsdp_min_num_params`: 0
289
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
290
+ - `fsdp_transformer_layer_cls_to_wrap`: None
291
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
292
+ - `deepspeed`: None
293
+ - `label_smoothing_factor`: 0.0
294
+ - `optim`: adamw_torch
295
+ - `optim_args`: None
296
+ - `adafactor`: False
297
+ - `group_by_length`: True
298
+ - `length_column_name`: length
299
+ - `ddp_find_unused_parameters`: None
300
+ - `ddp_bucket_cap_mb`: None
301
+ - `ddp_broadcast_buffers`: False
302
+ - `dataloader_pin_memory`: True
303
+ - `dataloader_persistent_workers`: False
304
+ - `skip_memory_metrics`: True
305
+ - `use_legacy_prediction_loop`: False
306
+ - `push_to_hub`: False
307
+ - `resume_from_checkpoint`: None
308
+ - `hub_model_id`: None
309
+ - `hub_strategy`: every_save
310
+ - `hub_private_repo`: False
311
+ - `hub_always_push`: False
312
+ - `gradient_checkpointing`: False
313
+ - `gradient_checkpointing_kwargs`: None
314
+ - `include_inputs_for_metrics`: False
315
+ - `include_for_metrics`: []
316
+ - `eval_do_concat_batches`: True
317
+ - `fp16_backend`: auto
318
+ - `push_to_hub_model_id`: None
319
+ - `push_to_hub_organization`: None
320
+ - `mp_parameters`:
321
+ - `auto_find_batch_size`: False
322
+ - `full_determinism`: False
323
+ - `torchdynamo`: None
324
+ - `ray_scope`: last
325
+ - `ddp_timeout`: 1800
326
+ - `torch_compile`: False
327
+ - `torch_compile_backend`: None
328
+ - `torch_compile_mode`: None
329
+ - `dispatch_batches`: None
330
+ - `split_batches`: None
331
+ - `include_tokens_per_second`: False
332
+ - `include_num_input_tokens_seen`: False
333
+ - `neftune_noise_alpha`: None
334
+ - `optim_target_modules`: None
335
+ - `batch_eval_metrics`: False
336
+ - `eval_on_start`: False
337
+ - `use_liger_kernel`: False
338
+ - `eval_use_gather_object`: False
339
+ - `average_tokens_across_devices`: False
340
+ - `prompts`: None
341
+ - `batch_sampler`: no_duplicates
342
+ - `multi_dataset_batch_sampler`: proportional
343
+
344
+ </details>
345
+
346
+ ### Training Logs
347
+ | Epoch | Step | Training Loss | val-hard_ndcg@10 | test-hard_ndcg@10 |
348
+ |:-----:|:----:|:-------------:|:----------------:|:-----------------:|
349
+ | 1.125 | 100 | 1.3041 | 0.7093 (+0.0740) | 0.7065 (+0.0783) |
350
+ | 2.25 | 200 | 0.9232 | 0.6994 (+0.0641) | 0.6987 (+0.0705) |
351
+
352
+
353
+ ### Framework Versions
354
+ - Python: 3.10.12
355
+ - Sentence Transformers: 4.2.0.dev0
356
+ - Transformers: 4.46.3
357
+ - PyTorch: 2.5.1+cu124
358
+ - Accelerate: 1.6.0
359
+ - Datasets: 3.6.0
360
+ - Tokenizers: 0.20.3
361
+
362
+ ## Citation
363
+
364
+ ### BibTeX
365
+
366
+ #### Sentence Transformers
367
+ ```bibtex
368
+ @inproceedings{reimers-2019-sentence-bert,
369
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
370
+ author = "Reimers, Nils and Gurevych, Iryna",
371
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
372
+ month = "11",
373
+ year = "2019",
374
+ publisher = "Association for Computational Linguistics",
375
+ url = "https://arxiv.org/abs/1908.10084",
376
+ }
377
+ ```
378
+
379
+ <!--
380
+ ## Glossary
381
+
382
+ *Clearly define terms in order to be accessible across audiences.*
383
+ -->
384
+
385
+ <!--
386
+ ## Model Card Authors
387
+
388
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
389
+ -->
390
+
391
+ <!--
392
+ ## Model Card Contact
393
+
394
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
395
+ -->
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cross-encoder/mmarco-mMiniLMv2-L12-H384-v1",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 384,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 1536,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "xlm-roberta",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 1,
27
+ "position_embedding_type": "absolute",
28
+ "sentence_transformers": {
29
+ "activation_fn": "torch.nn.modules.linear.Identity",
30
+ "version": "4.2.0.dev0"
31
+ },
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.46.3",
34
+ "type_vocab_size": 1,
35
+ "use_cache": true,
36
+ "vocab_size": 250002
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6bcb8df04cfb020d83422153dc9f8490bf78d045075dbe6cc6afe89b6b03665
3
+ size 470588492
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }