seroe commited on
Commit
2052b6c
·
verified ·
1 Parent(s): 268e28e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -57,13 +57,13 @@ model-index:
57
 
58
  # cross-encoder/ms-marco-MiniLM-L12-v2
59
 
60
- This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) on the [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
61
 
62
  ## Model Details
63
 
64
  ### Model Description
65
  - **Model Type:** Cross Encoder
66
- - **Base model:** [cross-encoder/mmarco-mMiniLMv2-L12-H384-v1](https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1) <!-- at revision 1427fd652930e4ba29e8149678df786c240d8825 -->
67
  - **Maximum Sequence Length:** 512 tokens
68
  - **Number of Output Labels:** 1 label
69
  - **Training Dataset:**
 
57
 
58
  # cross-encoder/ms-marco-MiniLM-L12-v2
59
 
60
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) on the [vodex-turkish-reranker-triplets](https://huggingface.co/datasets/seroe/vodex-turkish-reranker-triplets) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
61
 
62
  ## Model Details
63
 
64
  ### Model Description
65
  - **Model Type:** Cross Encoder
66
+ - **Base model:** [cross-encoder/ms-marco-MiniLM-L12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L12-v2) <!-- at revision 1427fd652930e4ba29e8149678df786c240d8825 -->
67
  - **Maximum Sequence Length:** 512 tokens
68
  - **Number of Output Labels:** 1 label
69
  - **Training Dataset:**