sgoodfriend's picture
VPG playing QbertNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/e8bc541d8b5e67bb4d3f2075282463fb61f5f2c6
11023c4
import numpy as np
import torch
import torch.nn as nn
from gym.spaces import Box
from pathlib import Path
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs
from typing import NamedTuple, Optional, Sequence, TypeVar
from shared.module.feature_extractor import FeatureExtractor
from shared.policy.actor import (
PiForward,
Actor,
StateDependentNoiseActorHead,
actor_head,
)
from shared.policy.critic import CriticHead
from shared.policy.on_policy import (
Step,
ACForward,
OnPolicy,
clamp_actions,
default_hidden_sizes,
)
from shared.policy.policy import ACTIVATION
PI_FILE_NAME = "pi.pt"
V_FILE_NAME = "v.pt"
class VPGActor(Actor):
def __init__(self, feature_extractor: FeatureExtractor, head: Actor) -> None:
super().__init__()
self.feature_extractor = feature_extractor
self.head = head
def forward(self, obs: torch.Tensor, a: Optional[torch.Tensor] = None) -> PiForward:
fe = self.feature_extractor(obs)
return self.head(fe, a)
class VPGActorCritic(OnPolicy):
def __init__(
self,
env: VecEnv,
hidden_sizes: Optional[Sequence[int]] = None,
init_layers_orthogonal: bool = True,
activation_fn: str = "tanh",
log_std_init: float = -0.5,
use_sde: bool = False,
full_std: bool = True,
squash_output: bool = False,
**kwargs,
) -> None:
super().__init__(env, **kwargs)
activation = ACTIVATION[activation_fn]
obs_space = env.observation_space
self.action_space = env.action_space
self.use_sde = use_sde
self.squash_output = squash_output
hidden_sizes = (
hidden_sizes
if hidden_sizes is not None
else default_hidden_sizes(obs_space)
)
pi_feature_extractor = FeatureExtractor(
obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
)
pi_head = actor_head(
self.action_space,
(pi_feature_extractor.out_dim,) + tuple(hidden_sizes),
init_layers_orthogonal,
activation,
log_std_init=log_std_init,
use_sde=use_sde,
full_std=full_std,
squash_output=squash_output,
)
self.pi = VPGActor(pi_feature_extractor, pi_head)
v_feature_extractor = FeatureExtractor(
obs_space, activation, init_layers_orthogonal=init_layers_orthogonal
)
v_head = CriticHead(
(v_feature_extractor.out_dim,) + tuple(hidden_sizes),
activation=activation,
init_layers_orthogonal=init_layers_orthogonal,
)
self.v = nn.Sequential(v_feature_extractor, v_head)
def value(self, obs: VecEnvObs) -> np.ndarray:
o = self._as_tensor(obs)
with torch.no_grad():
v = self.v(o)
return v.cpu().numpy()
def step(self, obs: VecEnvObs) -> Step:
o = self._as_tensor(obs)
with torch.no_grad():
pi, _, _ = self.pi(o)
a = pi.sample()
logp_a = pi.log_prob(a)
v = self.v(o)
a_np = a.cpu().numpy()
clamped_a_np = clamp_actions(a_np, self.action_space, self.squash_output)
return Step(a_np, v.cpu().numpy(), logp_a.cpu().numpy(), clamped_a_np)
def act(self, obs: np.ndarray, deterministic: bool = True) -> np.ndarray:
if not deterministic:
return self.step(obs).clamped_a
else:
o = self._as_tensor(obs)
with torch.no_grad():
pi, _, _ = self.pi(o)
a = pi.mode
return clamp_actions(a.cpu().numpy(), self.action_space, self.squash_output)
def load(self, path: str) -> None:
super().load(path)
self.reset_noise()
def reset_noise(self, batch_size: Optional[int] = None) -> None:
if isinstance(self.pi.head, StateDependentNoiseActorHead):
self.pi.head.sample_weights(
batch_size=batch_size if batch_size else self.env.num_envs
)