--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - Hani89/medical_asr_recording_dataset metrics: - wer model-index: - name: Whisper Base - Shantanu results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'medical-speech-transcription-and-intent ' type: Hani89/medical_asr_recording_dataset args: 'config: en, split: test' metrics: - name: Wer type: wer value: 5.945355191256831 --- # Whisper Base - Shantanu This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the medical-speech-transcription-and-intent dataset. It achieves the following results on the evaluation set: - Loss: 0.1194 - Wer: 5.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0544 | 3.0030 | 1000 | 0.1275 | 7.1403 | | 0.007 | 6.0060 | 2000 | 0.1147 | 6.4044 | | 0.0007 | 9.0090 | 3000 | 0.1183 | 5.9381 | | 0.0004 | 12.0120 | 4000 | 0.1194 | 5.9454 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3