shrijayan commited on
Commit
41b0d7b
·
verified ·
1 Parent(s): aa2727b

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:800
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: intfloat/e5-base-v2
13
+ widget:
14
+ - source_sentence: For the following multiple choice question, select one correct
15
+ answer. Let s think step by step. Question In a postoperative patient with a urinary
16
+ diversion, the nurse should monitor the urine volume every hour. Below how many
17
+ ml h of urine may indicate that the patient is dehydrated or has some type of
18
+ internal obstruction or loss ? Options A. 200 ml h. B. 100 ml h. C. 80 ml h. D.
19
+ 50 ml h. E. 30 ml h.
20
+ sentences:
21
+ - Our approach shows that gene expression can be explained by a modest number of
22
+ co localized transcription factors, however, information on cell type specific
23
+ binding is crucial for understanding combinatorial gene regulation.
24
+ - We have developed a rapid, simple, sensitive and specific method to quantify β
25
+ antithrombin activity using 1μL of plasma. β antithrombin significantly increases
26
+ in patients with ischemic cerebrovascular disease during the acute event, probably
27
+ by its release from the vasculature.
28
+ - A postoperative patient with a urinary diversion requires close monitoring of
29
+ urine output to ensure that the diversion is functioning properly and that the
30
+ patient is not experiencing any complications. Monitoring urine volume every hour
31
+ is a crucial aspect of postoperative care in this scenario. To determine the correct
32
+ answer, let s analyze each option A. 200 ml h This is a relatively high urine
33
+ output, and it would not typically indicate dehydration or internal obstruction.
34
+ In fact, a urine output of 200 ml h is generally considered adequate and may even
35
+ be higher than the average urine output for a healthy adult. B. 100 ml h This
36
+ is also a relatively high urine output and would not typically indicate dehydration
37
+ or internal obstruction. A urine output of 100 ml h is still within the normal
38
+ range and would not raise concerns about dehydration or obstruction. C. 80 ml
39
+ h While this is a slightly lower urine output, it is still within the normal range
40
+ and would not necessarily indicate dehydration or internal obstruction. D. 50
41
+ ml h This is a lower urine output, and it may start to raise concerns about dehydration
42
+ or internal obstruction. However, it is still not the lowest option, and the nurse
43
+ may need to consider other factors before determining the cause of the low urine
44
+ output. E. 30 ml h This is the lowest urine output option, and it would likely
45
+ indicate that the patient is dehydrated or has some type of internal obstruction
46
+ or loss. A urine output of 30 ml h is generally considered low and would require
47
+ immediate attention from the nurse to determine the cause and take corrective
48
+ action. Considering the options, the correct answer is E. 30 ml h. A urine output
49
+ of 30 ml h is a critical threshold that may indicate dehydration or internal obstruction,
50
+ and the nurse should take immediate action to assess the patient s fluid status
51
+ and the functioning of the urinary diversion. Answer E.
52
+ - source_sentence: In tumor lysis syndrome all of the following are seen except
53
+ sentences:
54
+ - The results indicated that some polymorphic variations of drug metabolic and transporter
55
+ genes may be potential biomarkers for clinical outcome of gemcitabine based therapy
56
+ in patients with locally advanced pancreatic cancer.
57
+ - Variations in the prevalence of depressive symptoms occurred between centres,
58
+ not always related to levels of illness. There was no consistent relationship
59
+ between proportions of symptoms in well persons and cases for all centres. Few
60
+ symptoms were present in 60 of the older population stereotypes of old age were
61
+ not upheld.
62
+ - Tumor lysis syndrome Caused by destruction of large number of rapidly proliferating
63
+ neoplastic cells. It frequently leads to ARF It is characterized by Hypocalcemia
64
+ Hyperkalemia Lactic acidosis Hyperuricemia Hyperphosphatemia Most frequently associated
65
+ with treatment of Burkitt lymphoma ALL CLL Solid tumors
66
+ - source_sentence: Does prevalence of central venous occlusion in patients with chronic
67
+ defibrillator lead?
68
+ sentences:
69
+ - Intraoperative small dose IV haloperidol is effective against post operative nausea
70
+ and vomiting with no significant effect on overall QoR. It may also attenuate
71
+ the analgesic effects of morphine PCA.
72
+ - Intubation is generally done with the help of endotracheal tube ETT . The internal
73
+ diameter of ETT used ranges between 3 and 8 mm depending on the age, sex, and
74
+ size of nares of the patient. Potex north and south polar performed Rae tubes
75
+ RAE right angled ETT and flexo metallic tubes are commonly used. Out of them,
76
+ North Pole Rae tube is preferred in case of ankylosis patient due to the direction
77
+ of the curve of ETT which favors its placement in restricted mouth opening as
78
+ in case of ankylosis.
79
+ - The low prevalence of subclavian vein occlusion or severe stenosis among defibrillator
80
+ recipients found in this study suggests that the placement of additional transvenous
81
+ leads in a patient who already has a ventricular defibrillator is feasible in
82
+ a high percentage of patients 93 .
83
+ - source_sentence: Is mode of presentation of B3 breast core biopsies screen detected
84
+ or symptomatic a distinguishing factor in the final histopathologic result or
85
+ risk of diagnosis of malignancy?
86
+ sentences:
87
+ - This observation may indicate a considerable difference in cardiovascular risk
88
+ between genotype groups as a result of an increase in FVIIa after a fat rich diet.
89
+ - Mode of patient presentation with a screen detected or symptomatic lesion was
90
+ not a distinguishing factor for breast histopathologic subclassification or for
91
+ the final cancer diagnosis in patients whose breast core biopsy was classified
92
+ as B3.
93
+ - Ans. is a i.e., Apaf 1o One of these proteins is cytochrome c, well known for
94
+ its role in mitochondrial respiration. In the cytosol, cytochrome C binds to a
95
+ protein called Apaf 1 apoptosis activating factor 1 , and the complex activates
96
+ caspase 9. Bc1 2 and Bcl x may also directly inhibit Apaf 1 activation, and their
97
+ loss from cells may permit activation of Apaf 1 .
98
+ - source_sentence: Is the Danish National Hospital Register a valuable study base
99
+ for epidemiologic research in febrile seizures?
100
+ sentences:
101
+ - Interstitial cystitis IC is a condition that causes discomfort or pain in the
102
+ bladder and a need to urinate frequently and urgently. It is far more common in
103
+ women than in men. The symptoms vary from person to person. Some people may have
104
+ pain without urgency or frequency. Others have urgency and frequency without pain.
105
+ Women s symptoms often get worse during their periods. They may also have pain
106
+ with sexual intercourse. The cause of IC isn t known. There is no one test to
107
+ tell if you have it. Doctors often run tests to rule out other possible causes
108
+ of symptoms. There is no cure for IC, but treatments can help most people feel
109
+ better. They include Distending, or inflating, the bladder Bathing the inside
110
+ of the bladder with a drug solution Oral medicines Electrical nerve stimulation
111
+ Physical therapy Lifestyle changes Bladder training In rare cases, surgery NIH
112
+ National Institute of Diabetes and Digestive and Kidney Diseases
113
+ - Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late
114
+ onset onset after 35 years of age Presence of precipitating stressor Good premorbid
115
+ adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married
116
+ Positive symptoms Presence of depression family history of mood disorder first
117
+ episode pyknic fat physique female sex good treatment compliance good response
118
+ to treatment good social suppo presence of confusion or perplexity normal brain
119
+ CT Scan outpatient treatment.
120
+ - The Danish National Hospital Register is a valuable tool for epidemiologic research
121
+ in febrile seizures.
122
+ pipeline_tag: sentence-similarity
123
+ library_name: sentence-transformers
124
+ metrics:
125
+ - cosine_accuracy
126
+ model-index:
127
+ - name: MPNet base trained on AllNLI triplets
128
+ results:
129
+ - task:
130
+ type: triplet
131
+ name: Triplet
132
+ dataset:
133
+ name: eval dataset
134
+ type: eval-dataset
135
+ metrics:
136
+ - type: cosine_accuracy
137
+ value: 1.0
138
+ name: Cosine Accuracy
139
+ - task:
140
+ type: triplet
141
+ name: Triplet
142
+ dataset:
143
+ name: test dataset
144
+ type: test-dataset
145
+ metrics:
146
+ - type: cosine_accuracy
147
+ value: 0.97
148
+ name: Cosine Accuracy
149
+ ---
150
+
151
+ # MPNet base trained on AllNLI triplets
152
+
153
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
154
+
155
+ ## Model Details
156
+
157
+ ### Model Description
158
+ - **Model Type:** Sentence Transformer
159
+ - **Base model:** [intfloat/e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) <!-- at revision 1c644c92ad3ba1efdad3f1451a637716616a20e8 -->
160
+ - **Maximum Sequence Length:** 512 tokens
161
+ - **Output Dimensionality:** 768 dimensions
162
+ - **Similarity Function:** Cosine Similarity
163
+ <!-- - **Training Dataset:** Unknown -->
164
+ - **Language:** en
165
+ - **License:** apache-2.0
166
+
167
+ ### Model Sources
168
+
169
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
170
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
171
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
172
+
173
+ ### Full Model Architecture
174
+
175
+ ```
176
+ SentenceTransformer(
177
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
178
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
179
+ (2): Normalize()
180
+ )
181
+ ```
182
+
183
+ ## Usage
184
+
185
+ ### Direct Usage (Sentence Transformers)
186
+
187
+ First install the Sentence Transformers library:
188
+
189
+ ```bash
190
+ pip install -U sentence-transformers
191
+ ```
192
+
193
+ Then you can load this model and run inference.
194
+ ```python
195
+ from sentence_transformers import SentenceTransformer
196
+
197
+ # Download from the 🤗 Hub
198
+ model = SentenceTransformer("sentence_transformers_model_id")
199
+ # Run inference
200
+ sentences = [
201
+ 'Is the Danish National Hospital Register a valuable study base for epidemiologic research in febrile seizures?',
202
+ 'The Danish National Hospital Register is a valuable tool for epidemiologic research in febrile seizures.',
203
+ 'Ans. is c i.e., Presence of depression Good prognostic factors Acute onset late onset onset after 35 years of age Presence of precipitating stressor Good premorbid adjustment catatonic best prognosis Paranoid 2nd best sho duration 6 months Married Positive symptoms Presence of depression family history of mood disorder first episode pyknic fat physique female sex good treatment compliance good response to treatment good social suppo presence of confusion or perplexity normal brain CT Scan outpatient treatment.',
204
+ ]
205
+ embeddings = model.encode(sentences)
206
+ print(embeddings.shape)
207
+ # [3, 768]
208
+
209
+ # Get the similarity scores for the embeddings
210
+ similarities = model.similarity(embeddings, embeddings)
211
+ print(similarities.shape)
212
+ # [3, 3]
213
+ ```
214
+
215
+ <!--
216
+ ### Direct Usage (Transformers)
217
+
218
+ <details><summary>Click to see the direct usage in Transformers</summary>
219
+
220
+ </details>
221
+ -->
222
+
223
+ <!--
224
+ ### Downstream Usage (Sentence Transformers)
225
+
226
+ You can finetune this model on your own dataset.
227
+
228
+ <details><summary>Click to expand</summary>
229
+
230
+ </details>
231
+ -->
232
+
233
+ <!--
234
+ ### Out-of-Scope Use
235
+
236
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
237
+ -->
238
+
239
+ ## Evaluation
240
+
241
+ ### Metrics
242
+
243
+ #### Triplet
244
+
245
+ * Datasets: `eval-dataset` and `test-dataset`
246
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
247
+
248
+ | Metric | eval-dataset | test-dataset |
249
+ |:--------------------|:-------------|:-------------|
250
+ | **cosine_accuracy** | **1.0** | **0.97** |
251
+
252
+ <!--
253
+ ## Bias, Risks and Limitations
254
+
255
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
256
+ -->
257
+
258
+ <!--
259
+ ### Recommendations
260
+
261
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
262
+ -->
263
+
264
+ ## Training Details
265
+
266
+ ### Training Dataset
267
+
268
+ #### Unnamed Dataset
269
+
270
+
271
+ * Size: 800 training samples
272
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
273
+ * Approximate statistics based on the first 800 samples:
274
+ | | sentence1 | sentence2 | label |
275
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
276
+ | type | string | string | float |
277
+ | details | <ul><li>min: 5 tokens</li><li>mean: 22.88 tokens</li><li>max: 205 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 81.77 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
278
+ * Samples:
279
+ | sentence1 | sentence2 | label |
280
+ |:------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
281
+ | <code>Triad of biotin deficiency is</code> | <code>Dermatitis, glossitis, Alopecia 407 H 314 Basic pathology 8th Biotin deficiency clinical features Adult Mental changes depression, hallucination , paresthesia, anorexia, nausea, A scaling, seborrheic and erythematous rash may occur around the eye, nose, mouth, as well as extremities 407 H Infant hypotonia, lethargy, apathy, alopecia and a characteristic rash that includes the ears.Symptoms of biotin deficiency includes Anaemia, loss of apepite dermatitis, glossitis 150 U. Satyanarayan Symptoms of biotin deficiency Dermatitis spectacle eyed appearance due to circumocular alopecia, pallor of skin membrane, depression, Lassitude, somnolence, anemia and hypercholesterolaemia 173 Rana Shinde 6th</code> | <code>1.0</code> |
282
+ | <code>Drug responsible for the below condition</code> | <code>Thalidomide given to pregnant lady can lead to hypoplasia of limbs called as Phocomelia .</code> | <code>1.0</code> |
283
+ | <code>Is benefit from procarbazine , lomustine , and vincristine in oligodendroglial tumors associated with mutation of IDH?</code> | <code>IDH mutational status identified patients with oligodendroglial tumors who did and did not benefit from alkylating agent chemotherapy with RT. Although patients with codeleted tumors lived longest, patients with noncodeleted IDH mutated tumors also lived longer after CRT.</code> | <code>1.0</code> |
284
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
285
+ ```json
286
+ {
287
+ "scale": 20.0,
288
+ "similarity_fct": "cos_sim"
289
+ }
290
+ ```
291
+
292
+ ### Evaluation Dataset
293
+
294
+ #### Unnamed Dataset
295
+
296
+
297
+ * Size: 100 evaluation samples
298
+ * Columns: <code>question</code>, <code>answer</code>, and <code>hard_negative</code>
299
+ * Approximate statistics based on the first 100 samples:
300
+ | | question | answer | hard_negative |
301
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------|
302
+ | type | string | string | NoneType |
303
+ | details | <ul><li>min: 5 tokens</li><li>mean: 22.52 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 83.51 tokens</li><li>max: 403 tokens</li></ul> | <ul><li></li></ul> |
304
+ * Samples:
305
+ | question | answer | hard_negative |
306
+ |:-----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
307
+ | <code>Hutchinsons secondaries In skull are due to tumors in</code> | <code>Adrenal neuroblastomas are malig8nant neoplasms arising from sympathetic neuroblsts in Medulla of adrenal gland Neuroblastoma is a cancer that develops from immature nerve cells found in several areas of the body.Neuroblastoma most commonly arises in and around the adrenalglands, which have similar origins to nerve cells and sit atop the kidneys.</code> | <code>None</code> |
308
+ | <code>Proliferative glomerular deposits in the kidney are found in</code> | <code>IgA nephropathy or Berger s disease immune complex mediated glomerulonephritis defined by the presence of diffuse mesangial IgA deposits often associated with mesangial hypercellularity. Male preponderance, peak incidence in the second and third decades of life.Clinical and laboratory findings Two most common presentations recurrent episodes of macroscopic hematuria during or immediately following an upper respiratory infection often accompanied by proteinuria or persistent asymptomatic microscopic hematuriaIgA deposited in the mesangium is typically polymeric and of the IgA1 subclass. IgM, IgG, C3, or immunoglobulin light chains may be codistributed with IgAPresence of elevated serum IgA levels in 20 50 of patients, IgA deposition in skin biopsies in 15 55 of patients, elevated levels of secretory IgA and IgA fibronectin complexesIgA nephropathy is a benign disease mostly, 5 30 of patients go into a complete remission, with others having hematuria but well preserved renal functionAbou...</code> | <code>None</code> |
309
+ | <code>Does meconium aspiration induce oxidative injury in the hippocampus of newborn piglets?</code> | <code>Our data thus suggest that oxidative injury associated with pulmonary, but not systemic, hemodynamic disturbances may contribute to hippocampal damage after meconium aspiration in newborns.</code> | <code>None</code> |
310
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
311
+ ```json
312
+ {
313
+ "scale": 20.0,
314
+ "similarity_fct": "cos_sim"
315
+ }
316
+ ```
317
+
318
+ ### Training Hyperparameters
319
+ #### Non-Default Hyperparameters
320
+
321
+ - `do_predict`: True
322
+ - `eval_strategy`: steps
323
+ - `per_device_train_batch_size`: 16
324
+ - `per_device_eval_batch_size`: 16
325
+ - `num_train_epochs`: 1
326
+ - `warmup_ratio`: 0.1
327
+ - `fp16`: True
328
+ - `load_best_model_at_end`: True
329
+ - `batch_sampler`: no_duplicates
330
+
331
+ #### All Hyperparameters
332
+ <details><summary>Click to expand</summary>
333
+
334
+ - `overwrite_output_dir`: False
335
+ - `do_predict`: True
336
+ - `eval_strategy`: steps
337
+ - `prediction_loss_only`: True
338
+ - `per_device_train_batch_size`: 16
339
+ - `per_device_eval_batch_size`: 16
340
+ - `per_gpu_train_batch_size`: None
341
+ - `per_gpu_eval_batch_size`: None
342
+ - `gradient_accumulation_steps`: 1
343
+ - `eval_accumulation_steps`: None
344
+ - `torch_empty_cache_steps`: None
345
+ - `learning_rate`: 5e-05
346
+ - `weight_decay`: 0.0
347
+ - `adam_beta1`: 0.9
348
+ - `adam_beta2`: 0.999
349
+ - `adam_epsilon`: 1e-08
350
+ - `max_grad_norm`: 1.0
351
+ - `num_train_epochs`: 1
352
+ - `max_steps`: -1
353
+ - `lr_scheduler_type`: linear
354
+ - `lr_scheduler_kwargs`: {}
355
+ - `warmup_ratio`: 0.1
356
+ - `warmup_steps`: 0
357
+ - `log_level`: passive
358
+ - `log_level_replica`: warning
359
+ - `log_on_each_node`: True
360
+ - `logging_nan_inf_filter`: True
361
+ - `save_safetensors`: True
362
+ - `save_on_each_node`: False
363
+ - `save_only_model`: False
364
+ - `restore_callback_states_from_checkpoint`: False
365
+ - `no_cuda`: False
366
+ - `use_cpu`: False
367
+ - `use_mps_device`: False
368
+ - `seed`: 42
369
+ - `data_seed`: None
370
+ - `jit_mode_eval`: False
371
+ - `use_ipex`: False
372
+ - `bf16`: False
373
+ - `fp16`: True
374
+ - `fp16_opt_level`: O1
375
+ - `half_precision_backend`: auto
376
+ - `bf16_full_eval`: False
377
+ - `fp16_full_eval`: False
378
+ - `tf32`: None
379
+ - `local_rank`: 0
380
+ - `ddp_backend`: None
381
+ - `tpu_num_cores`: None
382
+ - `tpu_metrics_debug`: False
383
+ - `debug`: []
384
+ - `dataloader_drop_last`: False
385
+ - `dataloader_num_workers`: 0
386
+ - `dataloader_prefetch_factor`: None
387
+ - `past_index`: -1
388
+ - `disable_tqdm`: False
389
+ - `remove_unused_columns`: True
390
+ - `label_names`: None
391
+ - `load_best_model_at_end`: True
392
+ - `ignore_data_skip`: False
393
+ - `fsdp`: []
394
+ - `fsdp_min_num_params`: 0
395
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
396
+ - `fsdp_transformer_layer_cls_to_wrap`: None
397
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
398
+ - `deepspeed`: None
399
+ - `label_smoothing_factor`: 0.0
400
+ - `optim`: adamw_torch
401
+ - `optim_args`: None
402
+ - `adafactor`: False
403
+ - `group_by_length`: False
404
+ - `length_column_name`: length
405
+ - `ddp_find_unused_parameters`: None
406
+ - `ddp_bucket_cap_mb`: None
407
+ - `ddp_broadcast_buffers`: False
408
+ - `dataloader_pin_memory`: True
409
+ - `dataloader_persistent_workers`: False
410
+ - `skip_memory_metrics`: True
411
+ - `use_legacy_prediction_loop`: False
412
+ - `push_to_hub`: False
413
+ - `resume_from_checkpoint`: None
414
+ - `hub_model_id`: None
415
+ - `hub_strategy`: every_save
416
+ - `hub_private_repo`: False
417
+ - `hub_always_push`: False
418
+ - `gradient_checkpointing`: False
419
+ - `gradient_checkpointing_kwargs`: None
420
+ - `include_inputs_for_metrics`: False
421
+ - `include_for_metrics`: []
422
+ - `eval_do_concat_batches`: True
423
+ - `fp16_backend`: auto
424
+ - `push_to_hub_model_id`: None
425
+ - `push_to_hub_organization`: None
426
+ - `mp_parameters`:
427
+ - `auto_find_batch_size`: False
428
+ - `full_determinism`: False
429
+ - `torchdynamo`: None
430
+ - `ray_scope`: last
431
+ - `ddp_timeout`: 1800
432
+ - `torch_compile`: False
433
+ - `torch_compile_backend`: None
434
+ - `torch_compile_mode`: None
435
+ - `dispatch_batches`: None
436
+ - `split_batches`: None
437
+ - `include_tokens_per_second`: False
438
+ - `include_num_input_tokens_seen`: False
439
+ - `neftune_noise_alpha`: None
440
+ - `optim_target_modules`: None
441
+ - `batch_eval_metrics`: False
442
+ - `eval_on_start`: False
443
+ - `use_liger_kernel`: False
444
+ - `eval_use_gather_object`: False
445
+ - `average_tokens_across_devices`: False
446
+ - `prompts`: None
447
+ - `batch_sampler`: no_duplicates
448
+ - `multi_dataset_batch_sampler`: proportional
449
+
450
+ </details>
451
+
452
+ ### Training Logs
453
+ | Epoch | Step | eval-dataset_cosine_accuracy | test-dataset_cosine_accuracy |
454
+ |:-----:|:----:|:----------------------------:|:----------------------------:|
455
+ | 0 | 0 | 1.0 | - |
456
+ | 1.0 | 25 | - | 0.97 |
457
+
458
+
459
+ ### Framework Versions
460
+ - Python: 3.11.10
461
+ - Sentence Transformers: 3.3.0
462
+ - Transformers: 4.46.2
463
+ - PyTorch: 2.5.1+cu124
464
+ - Accelerate: 1.1.1
465
+ - Datasets: 3.1.0
466
+ - Tokenizers: 0.20.3
467
+
468
+ ## Citation
469
+
470
+ ### BibTeX
471
+
472
+ #### Sentence Transformers
473
+ ```bibtex
474
+ @inproceedings{reimers-2019-sentence-bert,
475
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
476
+ author = "Reimers, Nils and Gurevych, Iryna",
477
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
478
+ month = "11",
479
+ year = "2019",
480
+ publisher = "Association for Computational Linguistics",
481
+ url = "https://arxiv.org/abs/1908.10084",
482
+ }
483
+ ```
484
+
485
+ #### MultipleNegativesRankingLoss
486
+ ```bibtex
487
+ @misc{henderson2017efficient,
488
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
489
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
490
+ year={2017},
491
+ eprint={1705.00652},
492
+ archivePrefix={arXiv},
493
+ primaryClass={cs.CL}
494
+ }
495
+ ```
496
+
497
+ <!--
498
+ ## Glossary
499
+
500
+ *Clearly define terms in order to be accessible across audiences.*
501
+ -->
502
+
503
+ <!--
504
+ ## Model Card Authors
505
+
506
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
507
+ -->
508
+
509
+ <!--
510
+ ## Model Card Contact
511
+
512
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
513
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/e5-base-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.2",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
evaluation/mteb_results/no_model_name_available/no_revision_available/NFCorpus.json ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_revision": "ec0fa4fe99da2ff19ca1214b7966684033a58814",
3
+ "evaluation_time": 9.280253410339355,
4
+ "kg_co2_emissions": null,
5
+ "mteb_version": "1.19.4",
6
+ "scores": {
7
+ "test": [
8
+ {
9
+ "hf_subset": "default",
10
+ "languages": [
11
+ "eng-Latn"
12
+ ],
13
+ "main_score": 0.32998,
14
+ "map_at_1": 0.05382,
15
+ "map_at_10": 0.11481,
16
+ "map_at_100": 0.1513,
17
+ "map_at_1000": 0.16691,
18
+ "map_at_20": 0.1299,
19
+ "map_at_3": 0.08062,
20
+ "map_at_5": 0.09595,
21
+ "mrr_at_1": 0.42724458204334365,
22
+ "mrr_at_10": 0.5175156027323209,
23
+ "mrr_at_100": 0.5232891043612237,
24
+ "mrr_at_1000": 0.5237590792840204,
25
+ "mrr_at_20": 0.5210801677674504,
26
+ "mrr_at_3": 0.4932920536635707,
27
+ "mrr_at_5": 0.5078431372549018,
28
+ "nauc_map_at_1000_diff1": 0.3424619256032944,
29
+ "nauc_map_at_1000_max": 0.3693102696035962,
30
+ "nauc_map_at_1000_std": 0.23406902915490777,
31
+ "nauc_map_at_100_diff1": 0.3664032244991238,
32
+ "nauc_map_at_100_max": 0.3616164046890892,
33
+ "nauc_map_at_100_std": 0.19306556860178878,
34
+ "nauc_map_at_10_diff1": 0.4156009435131605,
35
+ "nauc_map_at_10_max": 0.29562996580170675,
36
+ "nauc_map_at_10_std": 0.06704195423653216,
37
+ "nauc_map_at_1_diff1": 0.5404652621843595,
38
+ "nauc_map_at_1_max": 0.15666145095222495,
39
+ "nauc_map_at_1_std": -0.06924305439448407,
40
+ "nauc_map_at_20_diff1": 0.39116110240291857,
41
+ "nauc_map_at_20_max": 0.32656228345644944,
42
+ "nauc_map_at_20_std": 0.11943206233983186,
43
+ "nauc_map_at_3_diff1": 0.4839472491919537,
44
+ "nauc_map_at_3_max": 0.21295648818166926,
45
+ "nauc_map_at_3_std": -0.030806258280614233,
46
+ "nauc_map_at_5_diff1": 0.4587164068060277,
47
+ "nauc_map_at_5_max": 0.25959085498123746,
48
+ "nauc_map_at_5_std": 0.002151856366699112,
49
+ "nauc_mrr_at_1000_diff1": 0.4143698214465788,
50
+ "nauc_mrr_at_1000_max": 0.512000879689416,
51
+ "nauc_mrr_at_1000_std": 0.3428040396879113,
52
+ "nauc_mrr_at_100_diff1": 0.41439869757870795,
53
+ "nauc_mrr_at_100_max": 0.5123272431773179,
54
+ "nauc_mrr_at_100_std": 0.3431494307015444,
55
+ "nauc_mrr_at_10_diff1": 0.41437744530026277,
56
+ "nauc_mrr_at_10_max": 0.5099161545430382,
57
+ "nauc_mrr_at_10_std": 0.33964773082836386,
58
+ "nauc_mrr_at_1_diff1": 0.4231839574482019,
59
+ "nauc_mrr_at_1_max": 0.4469665807737527,
60
+ "nauc_mrr_at_1_std": 0.27085917262801257,
61
+ "nauc_mrr_at_20_diff1": 0.4152648392708018,
62
+ "nauc_mrr_at_20_max": 0.5142497177973875,
63
+ "nauc_mrr_at_20_std": 0.34453128842595215,
64
+ "nauc_mrr_at_3_diff1": 0.4108552343198126,
65
+ "nauc_mrr_at_3_max": 0.49298778917009023,
66
+ "nauc_mrr_at_3_std": 0.32896950968687616,
67
+ "nauc_mrr_at_5_diff1": 0.41651963935747843,
68
+ "nauc_mrr_at_5_max": 0.5096629256087836,
69
+ "nauc_mrr_at_5_std": 0.3328685043125068,
70
+ "nauc_ndcg_at_1000_diff1": 0.30391274378679184,
71
+ "nauc_ndcg_at_1000_max": 0.5006864181246558,
72
+ "nauc_ndcg_at_1000_std": 0.4082632775822215,
73
+ "nauc_ndcg_at_100_diff1": 0.3127438588402751,
74
+ "nauc_ndcg_at_100_max": 0.45224046265925877,
75
+ "nauc_ndcg_at_100_std": 0.3425023156539249,
76
+ "nauc_ndcg_at_10_diff1": 0.28441439640368743,
77
+ "nauc_ndcg_at_10_max": 0.43810699899062217,
78
+ "nauc_ndcg_at_10_std": 0.3355576417713615,
79
+ "nauc_ndcg_at_1_diff1": 0.4194205464421708,
80
+ "nauc_ndcg_at_1_max": 0.41498596839428925,
81
+ "nauc_ndcg_at_1_std": 0.27125785456035756,
82
+ "nauc_ndcg_at_20_diff1": 0.2710726283110113,
83
+ "nauc_ndcg_at_20_max": 0.43015508471743263,
84
+ "nauc_ndcg_at_20_std": 0.34122233366577315,
85
+ "nauc_ndcg_at_3_diff1": 0.3285342754684657,
86
+ "nauc_ndcg_at_3_max": 0.42165508775193616,
87
+ "nauc_ndcg_at_3_std": 0.28577367095585693,
88
+ "nauc_ndcg_at_5_diff1": 0.311559459754687,
89
+ "nauc_ndcg_at_5_max": 0.4434562563215353,
90
+ "nauc_ndcg_at_5_std": 0.30904937508002883,
91
+ "nauc_precision_at_1000_diff1": -0.11106426370716928,
92
+ "nauc_precision_at_1000_max": 0.08177717612316253,
93
+ "nauc_precision_at_1000_std": 0.3025166933389465,
94
+ "nauc_precision_at_100_diff1": -0.07472866467160653,
95
+ "nauc_precision_at_100_max": 0.22620520811654854,
96
+ "nauc_precision_at_100_std": 0.41579299300237504,
97
+ "nauc_precision_at_10_diff1": 0.07728674949325742,
98
+ "nauc_precision_at_10_max": 0.41474780473040623,
99
+ "nauc_precision_at_10_std": 0.42978671580761185,
100
+ "nauc_precision_at_1_diff1": 0.43133998171448573,
101
+ "nauc_precision_at_1_max": 0.4416446045088822,
102
+ "nauc_precision_at_1_std": 0.2753392661341198,
103
+ "nauc_precision_at_20_diff1": 0.009146810147417889,
104
+ "nauc_precision_at_20_max": 0.35208630930337087,
105
+ "nauc_precision_at_20_std": 0.4439061428651268,
106
+ "nauc_precision_at_3_diff1": 0.23722090687165115,
107
+ "nauc_precision_at_3_max": 0.439996027141254,
108
+ "nauc_precision_at_3_std": 0.3288230491536673,
109
+ "nauc_precision_at_5_diff1": 0.1780802066482304,
110
+ "nauc_precision_at_5_max": 0.4588297124377219,
111
+ "nauc_precision_at_5_std": 0.3744491247477144,
112
+ "nauc_recall_at_1000_diff1": 0.10363785189874622,
113
+ "nauc_recall_at_1000_max": 0.2681126176662348,
114
+ "nauc_recall_at_1000_std": 0.27422038039510177,
115
+ "nauc_recall_at_100_diff1": 0.2639497848749735,
116
+ "nauc_recall_at_100_max": 0.3059527509909492,
117
+ "nauc_recall_at_100_std": 0.24325834981106828,
118
+ "nauc_recall_at_10_diff1": 0.3442826991641897,
119
+ "nauc_recall_at_10_max": 0.2803843621484127,
120
+ "nauc_recall_at_10_std": 0.08910309647424257,
121
+ "nauc_recall_at_1_diff1": 0.5404652621843595,
122
+ "nauc_recall_at_1_max": 0.15666145095222495,
123
+ "nauc_recall_at_1_std": -0.06924305439448407,
124
+ "nauc_recall_at_20_diff1": 0.2913829064591792,
125
+ "nauc_recall_at_20_max": 0.2899553080148023,
126
+ "nauc_recall_at_20_std": 0.12012278568819378,
127
+ "nauc_recall_at_3_diff1": 0.4520497431070753,
128
+ "nauc_recall_at_3_max": 0.2051619690797763,
129
+ "nauc_recall_at_3_std": -0.03464997708862103,
130
+ "nauc_recall_at_5_diff1": 0.418141869398435,
131
+ "nauc_recall_at_5_max": 0.26027335173262683,
132
+ "nauc_recall_at_5_std": 0.004168262404352809,
133
+ "ndcg_at_1": 0.40867,
134
+ "ndcg_at_10": 0.32998,
135
+ "ndcg_at_100": 0.3096,
136
+ "ndcg_at_1000": 0.39921,
137
+ "ndcg_at_20": 0.31274,
138
+ "ndcg_at_3": 0.37019,
139
+ "ndcg_at_5": 0.35708,
140
+ "precision_at_1": 0.42415,
141
+ "precision_at_10": 0.25418,
142
+ "precision_at_100": 0.0839,
143
+ "precision_at_1000": 0.0212,
144
+ "precision_at_20": 0.19381,
145
+ "precision_at_3": 0.35191,
146
+ "precision_at_5": 0.31703,
147
+ "recall_at_1": 0.05382,
148
+ "recall_at_10": 0.15584,
149
+ "recall_at_100": 0.32328,
150
+ "recall_at_1000": 0.64829,
151
+ "recall_at_20": 0.20038,
152
+ "recall_at_3": 0.08847,
153
+ "recall_at_5": 0.11553
154
+ }
155
+ ]
156
+ },
157
+ "task_name": "NFCorpus"
158
+ }
evaluation/mteb_results/no_model_name_available/no_revision_available/model_meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name": "no_model_name_available", "revision": "no_revision_available", "release_date": null, "languages": [], "n_parameters": null, "memory_usage": null, "max_tokens": null, "embed_dim": null, "license": null, "open_weights": null, "public_training_data": null, "public_training_code": null, "framework": ["Sentence Transformers"], "reference": null, "similarity_fn_name": "cosine", "use_instructions": null, "zero_shot_benchmarks": null, "loader": null}
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747f0435cd96914c969f3da4db9bc64db36ff78c104e3816ea0689f4c9cb6a73
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff