File size: 3,834 Bytes
5719ba5
 
55b70a7
 
 
 
 
 
 
 
5719ba5
 
55b70a7
 
5719ba5
55b70a7
 
5719ba5
55b70a7
 
 
 
 
5719ba5
55b70a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5719ba5
 
 
 
55b70a7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-30B-A3B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: shuttle-3.5-moe-ckpts
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.9.0`
```yaml
# Weights and Biases logging config
wandb_project: shuttle-3.5
wandb_name: "3.5-moe"

# Model architecture config
base_model: Qwen/Qwen3-30B-A3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: chatml

# Hugging Face saving config
hub_model_id: shuttleai/shuttle-3.5-moe-ckpts
hub_strategy: all_checkpoints

# Model checkpointing config
output_dir: ./moe-out
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 5

# Mixed precision training config
bf16: true
fp16: false
tf32: false

# Model loading config
load_in_8bit: false
load_in_4bit: true
strict: false

# Sequence config
sequence_len: 14336
s2_attention: false
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: false
group_by_length: false

# QLoRA adapter config
adapter: qlora
lora_r: 64
lora_alpha: 64
lora_dropout: 0.05
peft_use_dora: false
lora_target_modules:
    - gate_proj
    - down_proj
    - up_proj
    - q_proj
    - v_proj
    - k_proj
    - o_proj
    
# Dataset config
datasets:
    - path: ./dataset
      type: chat_template
val_set_size: 0.05
evals_per_epoch: 2
dataset_prepared_path: ./prepared-datasets
shuffle_merged_datasets: true

# Training hyperparameters
num_epochs: 1
gradient_accumulation_steps: 2
micro_batch_size: 2
eval_batch_size: 1
warmup_steps: 500
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-4
loraplus_lr_ratio: 8
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 1
logging_steps: 1

# Model optimization
unsloth_lora_qkv: true
gradient_checkpointing: unsloth
xformers_attention: false
flash_attention: true
sdp_attention: false
unsloth_cross_entropy_loss: true
unsloth_lora_mlp: false
unsloth_lora_qkv: false
unsloth_lora_o: false

# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3

# Debug config
debug: false
seed: 42

deepspeed: deepspeed_configs/zero2.json
```

</details><br>

# shuttle-3.5-moe-ckpts

This model is a fine-tuned version of [Qwen/Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1380

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.4277        | 0.0006 | 1    | 5.3197          |
| 1.7432        | 0.5003 | 869  | 1.1380          |


### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1