xtristan commited on
Commit
0e039f9
·
verified ·
1 Parent(s): 5719ba5

Training in progress, step 348, checkpoint

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ checkpoint-348/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-348/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-30B-A3B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-348/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-30B-A3B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": null,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 64,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 64,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "up_proj",
29
+ "down_proj",
30
+ "k_proj",
31
+ "q_proj",
32
+ "gate_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-348/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fefb9ae46d523e5e0a0ad7ee9f2804bc4da7c0a59d1df2881f7fc33d2fc261ca
3
+ size 6756184008
checkpoint-348/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-348/global_step348/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c26224c2a2504f326ff8e6bc3674e2b4fda6aec49d24d90bc5aac7bfc5fcff9
3
+ size 20362125410
checkpoint-348/global_step348/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d54b7da4cb4de6f59643cd609a1475186df00d7591f1a946567a82748f3e4ebe
3
+ size 7316660630
checkpoint-348/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step348
checkpoint-348/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-348/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3b848ab7ef0264d0508b072d69f710255cd0e7c030dac907e05d4a279a23d4e
3
+ size 14244
checkpoint-348/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c26c90e5036214cbccdc225848656b5d5b067324cc261862b5f76b29c318bf58
3
+ size 1064
checkpoint-348/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-348/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
checkpoint-348/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
checkpoint-348/trainer_state.json ADDED
@@ -0,0 +1,2478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.2003454231433506,
6
+ "eval_steps": 869,
7
+ "global_step": 348,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0005757052389176742,
14
+ "grad_norm": 2.557003974914551,
15
+ "learning_rate": 0.0,
16
+ "loss": 5.4277,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0005757052389176742,
21
+ "eval_loss": 5.319709300994873,
22
+ "eval_runtime": 1026.7022,
23
+ "eval_samples_per_second": 2.496,
24
+ "eval_steps_per_second": 2.496,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.0011514104778353484,
29
+ "grad_norm": 2.985229969024658,
30
+ "learning_rate": 4.0000000000000003e-07,
31
+ "loss": 5.7019,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.0017271157167530224,
36
+ "grad_norm": 3.0353081226348877,
37
+ "learning_rate": 8.000000000000001e-07,
38
+ "loss": 6.1934,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.002302820955670697,
43
+ "grad_norm": 3.724905490875244,
44
+ "learning_rate": 1.2000000000000002e-06,
45
+ "loss": 5.4617,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.0028785261945883708,
50
+ "grad_norm": 2.6505627632141113,
51
+ "learning_rate": 1.6000000000000001e-06,
52
+ "loss": 5.4285,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.0034542314335060447,
57
+ "grad_norm": 2.7363409996032715,
58
+ "learning_rate": 2.0000000000000003e-06,
59
+ "loss": 5.8634,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.004029936672423719,
64
+ "grad_norm": 3.082538366317749,
65
+ "learning_rate": 2.4000000000000003e-06,
66
+ "loss": 4.7461,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.004605641911341394,
71
+ "grad_norm": 9.095250129699707,
72
+ "learning_rate": 2.8000000000000003e-06,
73
+ "loss": 7.5703,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.0051813471502590676,
78
+ "grad_norm": 2.2597923278808594,
79
+ "learning_rate": 3.2000000000000003e-06,
80
+ "loss": 5.3631,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.0057570523891767415,
85
+ "grad_norm": 5.053525924682617,
86
+ "learning_rate": 3.6e-06,
87
+ "loss": 6.0132,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.0063327576280944155,
92
+ "grad_norm": 2.7407820224761963,
93
+ "learning_rate": 4.000000000000001e-06,
94
+ "loss": 5.9776,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.0069084628670120895,
99
+ "grad_norm": 2.4892263412475586,
100
+ "learning_rate": 4.4e-06,
101
+ "loss": 5.524,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.007484168105929764,
106
+ "grad_norm": 2.5302274227142334,
107
+ "learning_rate": 4.800000000000001e-06,
108
+ "loss": 5.8044,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.008059873344847437,
113
+ "grad_norm": 2.992504358291626,
114
+ "learning_rate": 5.2e-06,
115
+ "loss": 6.0307,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.008635578583765112,
120
+ "grad_norm": 4.081608295440674,
121
+ "learning_rate": 5.600000000000001e-06,
122
+ "loss": 4.6732,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.009211283822682787,
127
+ "grad_norm": 2.33296799659729,
128
+ "learning_rate": 6e-06,
129
+ "loss": 4.6356,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.00978698906160046,
134
+ "grad_norm": 2.798452854156494,
135
+ "learning_rate": 6.4000000000000006e-06,
136
+ "loss": 5.2941,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.010362694300518135,
141
+ "grad_norm": 2.290029525756836,
142
+ "learning_rate": 6.800000000000001e-06,
143
+ "loss": 4.9405,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.010938399539435808,
148
+ "grad_norm": 3.2164740562438965,
149
+ "learning_rate": 7.2e-06,
150
+ "loss": 5.6711,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.011514104778353483,
155
+ "grad_norm": 2.4481987953186035,
156
+ "learning_rate": 7.6e-06,
157
+ "loss": 5.0366,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.012089810017271158,
162
+ "grad_norm": 3.398063898086548,
163
+ "learning_rate": 8.000000000000001e-06,
164
+ "loss": 5.9377,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.012665515256188831,
169
+ "grad_norm": 2.3936686515808105,
170
+ "learning_rate": 8.400000000000001e-06,
171
+ "loss": 5.4237,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.013241220495106506,
176
+ "grad_norm": 2.7233810424804688,
177
+ "learning_rate": 8.8e-06,
178
+ "loss": 5.6551,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.013816925734024179,
183
+ "grad_norm": 2.9957566261291504,
184
+ "learning_rate": 9.2e-06,
185
+ "loss": 4.7701,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.014392630972941854,
190
+ "grad_norm": 6.397132396697998,
191
+ "learning_rate": 9.600000000000001e-06,
192
+ "loss": 6.4459,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.014968336211859529,
197
+ "grad_norm": 3.0593409538269043,
198
+ "learning_rate": 1e-05,
199
+ "loss": 5.2758,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.015544041450777202,
204
+ "grad_norm": 2.9723803997039795,
205
+ "learning_rate": 1.04e-05,
206
+ "loss": 5.6136,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.016119746689694875,
211
+ "grad_norm": 2.03314471244812,
212
+ "learning_rate": 1.08e-05,
213
+ "loss": 5.3556,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.01669545192861255,
218
+ "grad_norm": 1.777107834815979,
219
+ "learning_rate": 1.1200000000000001e-05,
220
+ "loss": 5.1061,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.017271157167530225,
225
+ "grad_norm": 3.2192044258117676,
226
+ "learning_rate": 1.16e-05,
227
+ "loss": 5.2414,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.017846862406447898,
232
+ "grad_norm": 3.924452066421509,
233
+ "learning_rate": 1.2e-05,
234
+ "loss": 5.2754,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.018422567645365574,
239
+ "grad_norm": 3.5611093044281006,
240
+ "learning_rate": 1.24e-05,
241
+ "loss": 5.2817,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.018998272884283247,
246
+ "grad_norm": 2.5194263458251953,
247
+ "learning_rate": 1.2800000000000001e-05,
248
+ "loss": 5.9063,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.01957397812320092,
253
+ "grad_norm": 2.403895854949951,
254
+ "learning_rate": 1.32e-05,
255
+ "loss": 5.1161,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.020149683362118594,
260
+ "grad_norm": 2.496400833129883,
261
+ "learning_rate": 1.3600000000000002e-05,
262
+ "loss": 5.3049,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.02072538860103627,
267
+ "grad_norm": 3.0970828533172607,
268
+ "learning_rate": 1.4000000000000001e-05,
269
+ "loss": 5.5807,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.021301093839953943,
274
+ "grad_norm": 3.941403388977051,
275
+ "learning_rate": 1.44e-05,
276
+ "loss": 6.0418,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.021876799078871616,
281
+ "grad_norm": 2.291431188583374,
282
+ "learning_rate": 1.48e-05,
283
+ "loss": 4.3686,
284
+ "step": 38
285
+ },
286
+ {
287
+ "epoch": 0.022452504317789293,
288
+ "grad_norm": 2.783054828643799,
289
+ "learning_rate": 1.52e-05,
290
+ "loss": 5.15,
291
+ "step": 39
292
+ },
293
+ {
294
+ "epoch": 0.023028209556706966,
295
+ "grad_norm": 3.579267978668213,
296
+ "learning_rate": 1.56e-05,
297
+ "loss": 5.7507,
298
+ "step": 40
299
+ },
300
+ {
301
+ "epoch": 0.02360391479562464,
302
+ "grad_norm": 3.5277323722839355,
303
+ "learning_rate": 1.6000000000000003e-05,
304
+ "loss": 6.112,
305
+ "step": 41
306
+ },
307
+ {
308
+ "epoch": 0.024179620034542316,
309
+ "grad_norm": 2.5100817680358887,
310
+ "learning_rate": 1.6400000000000002e-05,
311
+ "loss": 5.2133,
312
+ "step": 42
313
+ },
314
+ {
315
+ "epoch": 0.02475532527345999,
316
+ "grad_norm": 2.3821561336517334,
317
+ "learning_rate": 1.6800000000000002e-05,
318
+ "loss": 6.0345,
319
+ "step": 43
320
+ },
321
+ {
322
+ "epoch": 0.025331030512377662,
323
+ "grad_norm": 3.0675108432769775,
324
+ "learning_rate": 1.7199999999999998e-05,
325
+ "loss": 5.2294,
326
+ "step": 44
327
+ },
328
+ {
329
+ "epoch": 0.025906735751295335,
330
+ "grad_norm": 2.8790383338928223,
331
+ "learning_rate": 1.76e-05,
332
+ "loss": 5.6393,
333
+ "step": 45
334
+ },
335
+ {
336
+ "epoch": 0.02648244099021301,
337
+ "grad_norm": 3.3649141788482666,
338
+ "learning_rate": 1.8e-05,
339
+ "loss": 6.014,
340
+ "step": 46
341
+ },
342
+ {
343
+ "epoch": 0.027058146229130685,
344
+ "grad_norm": 3.4695286750793457,
345
+ "learning_rate": 1.84e-05,
346
+ "loss": 5.3457,
347
+ "step": 47
348
+ },
349
+ {
350
+ "epoch": 0.027633851468048358,
351
+ "grad_norm": 3.303622245788574,
352
+ "learning_rate": 1.88e-05,
353
+ "loss": 5.593,
354
+ "step": 48
355
+ },
356
+ {
357
+ "epoch": 0.028209556706966035,
358
+ "grad_norm": 2.481895923614502,
359
+ "learning_rate": 1.9200000000000003e-05,
360
+ "loss": 5.1439,
361
+ "step": 49
362
+ },
363
+ {
364
+ "epoch": 0.028785261945883708,
365
+ "grad_norm": 2.888579845428467,
366
+ "learning_rate": 1.9600000000000002e-05,
367
+ "loss": 4.6318,
368
+ "step": 50
369
+ },
370
+ {
371
+ "epoch": 0.02936096718480138,
372
+ "grad_norm": 3.4528300762176514,
373
+ "learning_rate": 2e-05,
374
+ "loss": 5.0376,
375
+ "step": 51
376
+ },
377
+ {
378
+ "epoch": 0.029936672423719057,
379
+ "grad_norm": 3.6751370429992676,
380
+ "learning_rate": 2.04e-05,
381
+ "loss": 4.9183,
382
+ "step": 52
383
+ },
384
+ {
385
+ "epoch": 0.03051237766263673,
386
+ "grad_norm": 3.382035970687866,
387
+ "learning_rate": 2.08e-05,
388
+ "loss": 5.499,
389
+ "step": 53
390
+ },
391
+ {
392
+ "epoch": 0.031088082901554404,
393
+ "grad_norm": 2.8802406787872314,
394
+ "learning_rate": 2.12e-05,
395
+ "loss": 5.3177,
396
+ "step": 54
397
+ },
398
+ {
399
+ "epoch": 0.03166378814047208,
400
+ "grad_norm": 6.158539772033691,
401
+ "learning_rate": 2.16e-05,
402
+ "loss": 6.2133,
403
+ "step": 55
404
+ },
405
+ {
406
+ "epoch": 0.03223949337938975,
407
+ "grad_norm": 2.599864959716797,
408
+ "learning_rate": 2.2000000000000003e-05,
409
+ "loss": 5.3691,
410
+ "step": 56
411
+ },
412
+ {
413
+ "epoch": 0.03281519861830743,
414
+ "grad_norm": 3.4526188373565674,
415
+ "learning_rate": 2.2400000000000002e-05,
416
+ "loss": 5.3801,
417
+ "step": 57
418
+ },
419
+ {
420
+ "epoch": 0.0333909038572251,
421
+ "grad_norm": 9.494807243347168,
422
+ "learning_rate": 2.2800000000000002e-05,
423
+ "loss": 7.3116,
424
+ "step": 58
425
+ },
426
+ {
427
+ "epoch": 0.033966609096142776,
428
+ "grad_norm": 4.3456130027771,
429
+ "learning_rate": 2.32e-05,
430
+ "loss": 4.7467,
431
+ "step": 59
432
+ },
433
+ {
434
+ "epoch": 0.03454231433506045,
435
+ "grad_norm": 3.8471431732177734,
436
+ "learning_rate": 2.36e-05,
437
+ "loss": 5.2742,
438
+ "step": 60
439
+ },
440
+ {
441
+ "epoch": 0.03511801957397812,
442
+ "grad_norm": 3.985994815826416,
443
+ "learning_rate": 2.4e-05,
444
+ "loss": 5.4615,
445
+ "step": 61
446
+ },
447
+ {
448
+ "epoch": 0.035693724812895795,
449
+ "grad_norm": 9.588626861572266,
450
+ "learning_rate": 2.44e-05,
451
+ "loss": 6.8261,
452
+ "step": 62
453
+ },
454
+ {
455
+ "epoch": 0.03626943005181347,
456
+ "grad_norm": 5.3343915939331055,
457
+ "learning_rate": 2.48e-05,
458
+ "loss": 6.0899,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 0.03684513529073115,
463
+ "grad_norm": 5.611617088317871,
464
+ "learning_rate": 2.5200000000000003e-05,
465
+ "loss": 6.4523,
466
+ "step": 64
467
+ },
468
+ {
469
+ "epoch": 0.03742084052964882,
470
+ "grad_norm": 4.497012615203857,
471
+ "learning_rate": 2.5600000000000002e-05,
472
+ "loss": 4.787,
473
+ "step": 65
474
+ },
475
+ {
476
+ "epoch": 0.037996545768566495,
477
+ "grad_norm": 5.032821178436279,
478
+ "learning_rate": 2.6000000000000002e-05,
479
+ "loss": 5.6337,
480
+ "step": 66
481
+ },
482
+ {
483
+ "epoch": 0.03857225100748417,
484
+ "grad_norm": 3.732733726501465,
485
+ "learning_rate": 2.64e-05,
486
+ "loss": 5.5212,
487
+ "step": 67
488
+ },
489
+ {
490
+ "epoch": 0.03914795624640184,
491
+ "grad_norm": 4.3597517013549805,
492
+ "learning_rate": 2.6800000000000004e-05,
493
+ "loss": 4.647,
494
+ "step": 68
495
+ },
496
+ {
497
+ "epoch": 0.039723661485319514,
498
+ "grad_norm": 5.359225273132324,
499
+ "learning_rate": 2.7200000000000004e-05,
500
+ "loss": 5.7052,
501
+ "step": 69
502
+ },
503
+ {
504
+ "epoch": 0.04029936672423719,
505
+ "grad_norm": 4.9161601066589355,
506
+ "learning_rate": 2.7600000000000003e-05,
507
+ "loss": 5.3191,
508
+ "step": 70
509
+ },
510
+ {
511
+ "epoch": 0.04087507196315487,
512
+ "grad_norm": 4.137385368347168,
513
+ "learning_rate": 2.8000000000000003e-05,
514
+ "loss": 5.1797,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 0.04145077720207254,
519
+ "grad_norm": 4.728359699249268,
520
+ "learning_rate": 2.84e-05,
521
+ "loss": 5.1125,
522
+ "step": 72
523
+ },
524
+ {
525
+ "epoch": 0.042026482440990214,
526
+ "grad_norm": 4.568793773651123,
527
+ "learning_rate": 2.88e-05,
528
+ "loss": 5.7705,
529
+ "step": 73
530
+ },
531
+ {
532
+ "epoch": 0.04260218767990789,
533
+ "grad_norm": 4.931026935577393,
534
+ "learning_rate": 2.9199999999999998e-05,
535
+ "loss": 5.1052,
536
+ "step": 74
537
+ },
538
+ {
539
+ "epoch": 0.04317789291882556,
540
+ "grad_norm": 4.697461128234863,
541
+ "learning_rate": 2.96e-05,
542
+ "loss": 5.1404,
543
+ "step": 75
544
+ },
545
+ {
546
+ "epoch": 0.04375359815774323,
547
+ "grad_norm": 6.393320083618164,
548
+ "learning_rate": 3e-05,
549
+ "loss": 6.2212,
550
+ "step": 76
551
+ },
552
+ {
553
+ "epoch": 0.04432930339666091,
554
+ "grad_norm": 5.876922607421875,
555
+ "learning_rate": 3.04e-05,
556
+ "loss": 5.7775,
557
+ "step": 77
558
+ },
559
+ {
560
+ "epoch": 0.044905008635578586,
561
+ "grad_norm": 4.749701499938965,
562
+ "learning_rate": 3.08e-05,
563
+ "loss": 4.7321,
564
+ "step": 78
565
+ },
566
+ {
567
+ "epoch": 0.04548071387449626,
568
+ "grad_norm": 4.894115447998047,
569
+ "learning_rate": 3.12e-05,
570
+ "loss": 5.2017,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 0.04605641911341393,
575
+ "grad_norm": 5.125804424285889,
576
+ "learning_rate": 3.16e-05,
577
+ "loss": 5.1661,
578
+ "step": 80
579
+ },
580
+ {
581
+ "epoch": 0.046632124352331605,
582
+ "grad_norm": 7.571075439453125,
583
+ "learning_rate": 3.2000000000000005e-05,
584
+ "loss": 6.1439,
585
+ "step": 81
586
+ },
587
+ {
588
+ "epoch": 0.04720782959124928,
589
+ "grad_norm": 4.469061374664307,
590
+ "learning_rate": 3.24e-05,
591
+ "loss": 5.1732,
592
+ "step": 82
593
+ },
594
+ {
595
+ "epoch": 0.04778353483016695,
596
+ "grad_norm": 4.565371513366699,
597
+ "learning_rate": 3.2800000000000004e-05,
598
+ "loss": 5.4892,
599
+ "step": 83
600
+ },
601
+ {
602
+ "epoch": 0.04835924006908463,
603
+ "grad_norm": 5.844489097595215,
604
+ "learning_rate": 3.32e-05,
605
+ "loss": 5.875,
606
+ "step": 84
607
+ },
608
+ {
609
+ "epoch": 0.048934945308002305,
610
+ "grad_norm": 10.564720153808594,
611
+ "learning_rate": 3.3600000000000004e-05,
612
+ "loss": 5.9008,
613
+ "step": 85
614
+ },
615
+ {
616
+ "epoch": 0.04951065054691998,
617
+ "grad_norm": 6.923472881317139,
618
+ "learning_rate": 3.4000000000000007e-05,
619
+ "loss": 5.4949,
620
+ "step": 86
621
+ },
622
+ {
623
+ "epoch": 0.05008635578583765,
624
+ "grad_norm": 6.902386665344238,
625
+ "learning_rate": 3.4399999999999996e-05,
626
+ "loss": 4.9801,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 0.050662061024755324,
631
+ "grad_norm": 8.239148139953613,
632
+ "learning_rate": 3.48e-05,
633
+ "loss": 5.6578,
634
+ "step": 88
635
+ },
636
+ {
637
+ "epoch": 0.051237766263673,
638
+ "grad_norm": 6.162630081176758,
639
+ "learning_rate": 3.52e-05,
640
+ "loss": 4.9911,
641
+ "step": 89
642
+ },
643
+ {
644
+ "epoch": 0.05181347150259067,
645
+ "grad_norm": 7.2612433433532715,
646
+ "learning_rate": 3.56e-05,
647
+ "loss": 5.7976,
648
+ "step": 90
649
+ },
650
+ {
651
+ "epoch": 0.05238917674150835,
652
+ "grad_norm": 6.149419784545898,
653
+ "learning_rate": 3.6e-05,
654
+ "loss": 4.9756,
655
+ "step": 91
656
+ },
657
+ {
658
+ "epoch": 0.05296488198042602,
659
+ "grad_norm": 7.4116106033325195,
660
+ "learning_rate": 3.6400000000000004e-05,
661
+ "loss": 5.5805,
662
+ "step": 92
663
+ },
664
+ {
665
+ "epoch": 0.0535405872193437,
666
+ "grad_norm": 5.512300491333008,
667
+ "learning_rate": 3.68e-05,
668
+ "loss": 4.5575,
669
+ "step": 93
670
+ },
671
+ {
672
+ "epoch": 0.05411629245826137,
673
+ "grad_norm": 14.799551963806152,
674
+ "learning_rate": 3.72e-05,
675
+ "loss": 5.2244,
676
+ "step": 94
677
+ },
678
+ {
679
+ "epoch": 0.05469199769717904,
680
+ "grad_norm": 9.756938934326172,
681
+ "learning_rate": 3.76e-05,
682
+ "loss": 4.8444,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 0.055267702936096716,
687
+ "grad_norm": 6.400147914886475,
688
+ "learning_rate": 3.8e-05,
689
+ "loss": 5.5091,
690
+ "step": 96
691
+ },
692
+ {
693
+ "epoch": 0.055843408175014396,
694
+ "grad_norm": 8.406181335449219,
695
+ "learning_rate": 3.8400000000000005e-05,
696
+ "loss": 5.2641,
697
+ "step": 97
698
+ },
699
+ {
700
+ "epoch": 0.05641911341393207,
701
+ "grad_norm": 6.860042572021484,
702
+ "learning_rate": 3.88e-05,
703
+ "loss": 5.2917,
704
+ "step": 98
705
+ },
706
+ {
707
+ "epoch": 0.05699481865284974,
708
+ "grad_norm": 7.542653560638428,
709
+ "learning_rate": 3.9200000000000004e-05,
710
+ "loss": 5.1584,
711
+ "step": 99
712
+ },
713
+ {
714
+ "epoch": 0.057570523891767415,
715
+ "grad_norm": 8.149137496948242,
716
+ "learning_rate": 3.960000000000001e-05,
717
+ "loss": 5.5326,
718
+ "step": 100
719
+ },
720
+ {
721
+ "epoch": 0.05814622913068509,
722
+ "grad_norm": 5.590121269226074,
723
+ "learning_rate": 4e-05,
724
+ "loss": 5.2789,
725
+ "step": 101
726
+ },
727
+ {
728
+ "epoch": 0.05872193436960276,
729
+ "grad_norm": 7.877676010131836,
730
+ "learning_rate": 4.0400000000000006e-05,
731
+ "loss": 4.8526,
732
+ "step": 102
733
+ },
734
+ {
735
+ "epoch": 0.059297639608520435,
736
+ "grad_norm": 5.773808479309082,
737
+ "learning_rate": 4.08e-05,
738
+ "loss": 5.033,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 0.059873344847438115,
743
+ "grad_norm": 6.092824935913086,
744
+ "learning_rate": 4.12e-05,
745
+ "loss": 4.8936,
746
+ "step": 104
747
+ },
748
+ {
749
+ "epoch": 0.06044905008635579,
750
+ "grad_norm": 5.934675693511963,
751
+ "learning_rate": 4.16e-05,
752
+ "loss": 4.4764,
753
+ "step": 105
754
+ },
755
+ {
756
+ "epoch": 0.06102475532527346,
757
+ "grad_norm": 5.622652530670166,
758
+ "learning_rate": 4.2e-05,
759
+ "loss": 5.1344,
760
+ "step": 106
761
+ },
762
+ {
763
+ "epoch": 0.061600460564191134,
764
+ "grad_norm": 7.697418212890625,
765
+ "learning_rate": 4.24e-05,
766
+ "loss": 5.2087,
767
+ "step": 107
768
+ },
769
+ {
770
+ "epoch": 0.06217616580310881,
771
+ "grad_norm": 5.204082489013672,
772
+ "learning_rate": 4.2800000000000004e-05,
773
+ "loss": 4.6294,
774
+ "step": 108
775
+ },
776
+ {
777
+ "epoch": 0.06275187104202648,
778
+ "grad_norm": 6.288537979125977,
779
+ "learning_rate": 4.32e-05,
780
+ "loss": 5.3009,
781
+ "step": 109
782
+ },
783
+ {
784
+ "epoch": 0.06332757628094415,
785
+ "grad_norm": 6.717288017272949,
786
+ "learning_rate": 4.36e-05,
787
+ "loss": 5.5392,
788
+ "step": 110
789
+ },
790
+ {
791
+ "epoch": 0.06390328151986183,
792
+ "grad_norm": 5.432399272918701,
793
+ "learning_rate": 4.4000000000000006e-05,
794
+ "loss": 4.3602,
795
+ "step": 111
796
+ },
797
+ {
798
+ "epoch": 0.0644789867587795,
799
+ "grad_norm": 6.823062896728516,
800
+ "learning_rate": 4.44e-05,
801
+ "loss": 5.7343,
802
+ "step": 112
803
+ },
804
+ {
805
+ "epoch": 0.06505469199769717,
806
+ "grad_norm": 6.532074928283691,
807
+ "learning_rate": 4.4800000000000005e-05,
808
+ "loss": 5.0605,
809
+ "step": 113
810
+ },
811
+ {
812
+ "epoch": 0.06563039723661486,
813
+ "grad_norm": 5.982126712799072,
814
+ "learning_rate": 4.52e-05,
815
+ "loss": 5.2182,
816
+ "step": 114
817
+ },
818
+ {
819
+ "epoch": 0.06620610247553253,
820
+ "grad_norm": 5.759943962097168,
821
+ "learning_rate": 4.5600000000000004e-05,
822
+ "loss": 4.9098,
823
+ "step": 115
824
+ },
825
+ {
826
+ "epoch": 0.0667818077144502,
827
+ "grad_norm": 5.147834300994873,
828
+ "learning_rate": 4.600000000000001e-05,
829
+ "loss": 4.8671,
830
+ "step": 116
831
+ },
832
+ {
833
+ "epoch": 0.06735751295336788,
834
+ "grad_norm": 8.015042304992676,
835
+ "learning_rate": 4.64e-05,
836
+ "loss": 5.7445,
837
+ "step": 117
838
+ },
839
+ {
840
+ "epoch": 0.06793321819228555,
841
+ "grad_norm": 7.161843299865723,
842
+ "learning_rate": 4.6800000000000006e-05,
843
+ "loss": 5.9092,
844
+ "step": 118
845
+ },
846
+ {
847
+ "epoch": 0.06850892343120323,
848
+ "grad_norm": 9.394163131713867,
849
+ "learning_rate": 4.72e-05,
850
+ "loss": 4.7243,
851
+ "step": 119
852
+ },
853
+ {
854
+ "epoch": 0.0690846286701209,
855
+ "grad_norm": 4.96219539642334,
856
+ "learning_rate": 4.76e-05,
857
+ "loss": 4.7233,
858
+ "step": 120
859
+ },
860
+ {
861
+ "epoch": 0.06966033390903857,
862
+ "grad_norm": 6.473387241363525,
863
+ "learning_rate": 4.8e-05,
864
+ "loss": 5.1295,
865
+ "step": 121
866
+ },
867
+ {
868
+ "epoch": 0.07023603914795624,
869
+ "grad_norm": 6.797422885894775,
870
+ "learning_rate": 4.8400000000000004e-05,
871
+ "loss": 4.7697,
872
+ "step": 122
873
+ },
874
+ {
875
+ "epoch": 0.07081174438687392,
876
+ "grad_norm": 6.656020641326904,
877
+ "learning_rate": 4.88e-05,
878
+ "loss": 5.2377,
879
+ "step": 123
880
+ },
881
+ {
882
+ "epoch": 0.07138744962579159,
883
+ "grad_norm": 5.552718639373779,
884
+ "learning_rate": 4.92e-05,
885
+ "loss": 4.4741,
886
+ "step": 124
887
+ },
888
+ {
889
+ "epoch": 0.07196315486470926,
890
+ "grad_norm": 6.101820468902588,
891
+ "learning_rate": 4.96e-05,
892
+ "loss": 4.4192,
893
+ "step": 125
894
+ },
895
+ {
896
+ "epoch": 0.07253886010362694,
897
+ "grad_norm": 7.695935249328613,
898
+ "learning_rate": 5e-05,
899
+ "loss": 5.4128,
900
+ "step": 126
901
+ },
902
+ {
903
+ "epoch": 0.07311456534254462,
904
+ "grad_norm": 6.9946208000183105,
905
+ "learning_rate": 5.0400000000000005e-05,
906
+ "loss": 5.4829,
907
+ "step": 127
908
+ },
909
+ {
910
+ "epoch": 0.0736902705814623,
911
+ "grad_norm": 16.10480308532715,
912
+ "learning_rate": 5.08e-05,
913
+ "loss": 4.6945,
914
+ "step": 128
915
+ },
916
+ {
917
+ "epoch": 0.07426597582037997,
918
+ "grad_norm": 5.313148021697998,
919
+ "learning_rate": 5.1200000000000004e-05,
920
+ "loss": 4.2429,
921
+ "step": 129
922
+ },
923
+ {
924
+ "epoch": 0.07484168105929764,
925
+ "grad_norm": 5.506260871887207,
926
+ "learning_rate": 5.16e-05,
927
+ "loss": 4.7241,
928
+ "step": 130
929
+ },
930
+ {
931
+ "epoch": 0.07541738629821532,
932
+ "grad_norm": 5.655925273895264,
933
+ "learning_rate": 5.2000000000000004e-05,
934
+ "loss": 5.4156,
935
+ "step": 131
936
+ },
937
+ {
938
+ "epoch": 0.07599309153713299,
939
+ "grad_norm": 6.528857231140137,
940
+ "learning_rate": 5.2400000000000007e-05,
941
+ "loss": 5.3606,
942
+ "step": 132
943
+ },
944
+ {
945
+ "epoch": 0.07656879677605066,
946
+ "grad_norm": 5.360299110412598,
947
+ "learning_rate": 5.28e-05,
948
+ "loss": 5.0686,
949
+ "step": 133
950
+ },
951
+ {
952
+ "epoch": 0.07714450201496834,
953
+ "grad_norm": 5.301785945892334,
954
+ "learning_rate": 5.3200000000000006e-05,
955
+ "loss": 4.845,
956
+ "step": 134
957
+ },
958
+ {
959
+ "epoch": 0.07772020725388601,
960
+ "grad_norm": 4.986385345458984,
961
+ "learning_rate": 5.360000000000001e-05,
962
+ "loss": 5.1493,
963
+ "step": 135
964
+ },
965
+ {
966
+ "epoch": 0.07829591249280368,
967
+ "grad_norm": 5.200460433959961,
968
+ "learning_rate": 5.4000000000000005e-05,
969
+ "loss": 4.781,
970
+ "step": 136
971
+ },
972
+ {
973
+ "epoch": 0.07887161773172136,
974
+ "grad_norm": 7.154032230377197,
975
+ "learning_rate": 5.440000000000001e-05,
976
+ "loss": 5.8801,
977
+ "step": 137
978
+ },
979
+ {
980
+ "epoch": 0.07944732297063903,
981
+ "grad_norm": 4.641168117523193,
982
+ "learning_rate": 5.4800000000000004e-05,
983
+ "loss": 5.1929,
984
+ "step": 138
985
+ },
986
+ {
987
+ "epoch": 0.0800230282095567,
988
+ "grad_norm": 4.8809123039245605,
989
+ "learning_rate": 5.520000000000001e-05,
990
+ "loss": 5.0221,
991
+ "step": 139
992
+ },
993
+ {
994
+ "epoch": 0.08059873344847437,
995
+ "grad_norm": 5.0507402420043945,
996
+ "learning_rate": 5.560000000000001e-05,
997
+ "loss": 4.8543,
998
+ "step": 140
999
+ },
1000
+ {
1001
+ "epoch": 0.08117443868739206,
1002
+ "grad_norm": 6.459733963012695,
1003
+ "learning_rate": 5.6000000000000006e-05,
1004
+ "loss": 5.051,
1005
+ "step": 141
1006
+ },
1007
+ {
1008
+ "epoch": 0.08175014392630973,
1009
+ "grad_norm": 6.107847690582275,
1010
+ "learning_rate": 5.6399999999999995e-05,
1011
+ "loss": 4.8338,
1012
+ "step": 142
1013
+ },
1014
+ {
1015
+ "epoch": 0.08232584916522741,
1016
+ "grad_norm": 6.28361701965332,
1017
+ "learning_rate": 5.68e-05,
1018
+ "loss": 5.1373,
1019
+ "step": 143
1020
+ },
1021
+ {
1022
+ "epoch": 0.08290155440414508,
1023
+ "grad_norm": 4.957414627075195,
1024
+ "learning_rate": 5.72e-05,
1025
+ "loss": 4.8154,
1026
+ "step": 144
1027
+ },
1028
+ {
1029
+ "epoch": 0.08347725964306275,
1030
+ "grad_norm": 4.774332046508789,
1031
+ "learning_rate": 5.76e-05,
1032
+ "loss": 4.7262,
1033
+ "step": 145
1034
+ },
1035
+ {
1036
+ "epoch": 0.08405296488198043,
1037
+ "grad_norm": 7.41762113571167,
1038
+ "learning_rate": 5.8e-05,
1039
+ "loss": 5.5137,
1040
+ "step": 146
1041
+ },
1042
+ {
1043
+ "epoch": 0.0846286701208981,
1044
+ "grad_norm": 7.484424591064453,
1045
+ "learning_rate": 5.8399999999999997e-05,
1046
+ "loss": 5.766,
1047
+ "step": 147
1048
+ },
1049
+ {
1050
+ "epoch": 0.08520437535981577,
1051
+ "grad_norm": 4.917182922363281,
1052
+ "learning_rate": 5.88e-05,
1053
+ "loss": 5.0193,
1054
+ "step": 148
1055
+ },
1056
+ {
1057
+ "epoch": 0.08578008059873345,
1058
+ "grad_norm": 4.608645915985107,
1059
+ "learning_rate": 5.92e-05,
1060
+ "loss": 5.0873,
1061
+ "step": 149
1062
+ },
1063
+ {
1064
+ "epoch": 0.08635578583765112,
1065
+ "grad_norm": 6.5947794914245605,
1066
+ "learning_rate": 5.96e-05,
1067
+ "loss": 4.9855,
1068
+ "step": 150
1069
+ },
1070
+ {
1071
+ "epoch": 0.08693149107656879,
1072
+ "grad_norm": 3.8302507400512695,
1073
+ "learning_rate": 6e-05,
1074
+ "loss": 3.7953,
1075
+ "step": 151
1076
+ },
1077
+ {
1078
+ "epoch": 0.08750719631548647,
1079
+ "grad_norm": 3.6352171897888184,
1080
+ "learning_rate": 6.04e-05,
1081
+ "loss": 4.1647,
1082
+ "step": 152
1083
+ },
1084
+ {
1085
+ "epoch": 0.08808290155440414,
1086
+ "grad_norm": 4.818563461303711,
1087
+ "learning_rate": 6.08e-05,
1088
+ "loss": 4.2128,
1089
+ "step": 153
1090
+ },
1091
+ {
1092
+ "epoch": 0.08865860679332183,
1093
+ "grad_norm": 7.7323503494262695,
1094
+ "learning_rate": 6.12e-05,
1095
+ "loss": 5.4562,
1096
+ "step": 154
1097
+ },
1098
+ {
1099
+ "epoch": 0.0892343120322395,
1100
+ "grad_norm": 5.785284996032715,
1101
+ "learning_rate": 6.16e-05,
1102
+ "loss": 4.8956,
1103
+ "step": 155
1104
+ },
1105
+ {
1106
+ "epoch": 0.08981001727115717,
1107
+ "grad_norm": 6.181385040283203,
1108
+ "learning_rate": 6.2e-05,
1109
+ "loss": 5.2373,
1110
+ "step": 156
1111
+ },
1112
+ {
1113
+ "epoch": 0.09038572251007485,
1114
+ "grad_norm": 6.015028476715088,
1115
+ "learning_rate": 6.24e-05,
1116
+ "loss": 4.3663,
1117
+ "step": 157
1118
+ },
1119
+ {
1120
+ "epoch": 0.09096142774899252,
1121
+ "grad_norm": 4.41657829284668,
1122
+ "learning_rate": 6.280000000000001e-05,
1123
+ "loss": 4.5991,
1124
+ "step": 158
1125
+ },
1126
+ {
1127
+ "epoch": 0.09153713298791019,
1128
+ "grad_norm": 6.5107622146606445,
1129
+ "learning_rate": 6.32e-05,
1130
+ "loss": 4.8784,
1131
+ "step": 159
1132
+ },
1133
+ {
1134
+ "epoch": 0.09211283822682786,
1135
+ "grad_norm": 4.11070442199707,
1136
+ "learning_rate": 6.36e-05,
1137
+ "loss": 4.6766,
1138
+ "step": 160
1139
+ },
1140
+ {
1141
+ "epoch": 0.09268854346574554,
1142
+ "grad_norm": 8.204343795776367,
1143
+ "learning_rate": 6.400000000000001e-05,
1144
+ "loss": 5.5088,
1145
+ "step": 161
1146
+ },
1147
+ {
1148
+ "epoch": 0.09326424870466321,
1149
+ "grad_norm": 3.9389288425445557,
1150
+ "learning_rate": 6.440000000000001e-05,
1151
+ "loss": 4.3476,
1152
+ "step": 162
1153
+ },
1154
+ {
1155
+ "epoch": 0.09383995394358088,
1156
+ "grad_norm": 5.597643852233887,
1157
+ "learning_rate": 6.48e-05,
1158
+ "loss": 4.9976,
1159
+ "step": 163
1160
+ },
1161
+ {
1162
+ "epoch": 0.09441565918249856,
1163
+ "grad_norm": 8.994287490844727,
1164
+ "learning_rate": 6.52e-05,
1165
+ "loss": 5.5959,
1166
+ "step": 164
1167
+ },
1168
+ {
1169
+ "epoch": 0.09499136442141623,
1170
+ "grad_norm": 5.60779333114624,
1171
+ "learning_rate": 6.560000000000001e-05,
1172
+ "loss": 4.6283,
1173
+ "step": 165
1174
+ },
1175
+ {
1176
+ "epoch": 0.0955670696603339,
1177
+ "grad_norm": 4.319982528686523,
1178
+ "learning_rate": 6.6e-05,
1179
+ "loss": 4.041,
1180
+ "step": 166
1181
+ },
1182
+ {
1183
+ "epoch": 0.09614277489925158,
1184
+ "grad_norm": 5.684337615966797,
1185
+ "learning_rate": 6.64e-05,
1186
+ "loss": 4.8941,
1187
+ "step": 167
1188
+ },
1189
+ {
1190
+ "epoch": 0.09671848013816926,
1191
+ "grad_norm": 3.872518539428711,
1192
+ "learning_rate": 6.680000000000001e-05,
1193
+ "loss": 4.2242,
1194
+ "step": 168
1195
+ },
1196
+ {
1197
+ "epoch": 0.09729418537708694,
1198
+ "grad_norm": 4.826557636260986,
1199
+ "learning_rate": 6.720000000000001e-05,
1200
+ "loss": 4.8546,
1201
+ "step": 169
1202
+ },
1203
+ {
1204
+ "epoch": 0.09786989061600461,
1205
+ "grad_norm": 4.660156726837158,
1206
+ "learning_rate": 6.76e-05,
1207
+ "loss": 4.3797,
1208
+ "step": 170
1209
+ },
1210
+ {
1211
+ "epoch": 0.09844559585492228,
1212
+ "grad_norm": 4.616059303283691,
1213
+ "learning_rate": 6.800000000000001e-05,
1214
+ "loss": 4.7293,
1215
+ "step": 171
1216
+ },
1217
+ {
1218
+ "epoch": 0.09902130109383996,
1219
+ "grad_norm": 7.685507774353027,
1220
+ "learning_rate": 6.840000000000001e-05,
1221
+ "loss": 5.6251,
1222
+ "step": 172
1223
+ },
1224
+ {
1225
+ "epoch": 0.09959700633275763,
1226
+ "grad_norm": 7.424576282501221,
1227
+ "learning_rate": 6.879999999999999e-05,
1228
+ "loss": 4.8253,
1229
+ "step": 173
1230
+ },
1231
+ {
1232
+ "epoch": 0.1001727115716753,
1233
+ "grad_norm": 4.379521369934082,
1234
+ "learning_rate": 6.92e-05,
1235
+ "loss": 4.5287,
1236
+ "step": 174
1237
+ },
1238
+ {
1239
+ "epoch": 0.10074841681059298,
1240
+ "grad_norm": 4.753964424133301,
1241
+ "learning_rate": 6.96e-05,
1242
+ "loss": 4.5554,
1243
+ "step": 175
1244
+ },
1245
+ {
1246
+ "epoch": 0.10132412204951065,
1247
+ "grad_norm": 4.559609413146973,
1248
+ "learning_rate": 7e-05,
1249
+ "loss": 4.5615,
1250
+ "step": 176
1251
+ },
1252
+ {
1253
+ "epoch": 0.10189982728842832,
1254
+ "grad_norm": 5.178406238555908,
1255
+ "learning_rate": 7.04e-05,
1256
+ "loss": 4.6344,
1257
+ "step": 177
1258
+ },
1259
+ {
1260
+ "epoch": 0.102475532527346,
1261
+ "grad_norm": 7.4183526039123535,
1262
+ "learning_rate": 7.08e-05,
1263
+ "loss": 4.5451,
1264
+ "step": 178
1265
+ },
1266
+ {
1267
+ "epoch": 0.10305123776626367,
1268
+ "grad_norm": 5.832037448883057,
1269
+ "learning_rate": 7.12e-05,
1270
+ "loss": 4.7097,
1271
+ "step": 179
1272
+ },
1273
+ {
1274
+ "epoch": 0.10362694300518134,
1275
+ "grad_norm": 4.9681925773620605,
1276
+ "learning_rate": 7.16e-05,
1277
+ "loss": 4.6288,
1278
+ "step": 180
1279
+ },
1280
+ {
1281
+ "epoch": 0.10420264824409903,
1282
+ "grad_norm": 4.886664867401123,
1283
+ "learning_rate": 7.2e-05,
1284
+ "loss": 4.7019,
1285
+ "step": 181
1286
+ },
1287
+ {
1288
+ "epoch": 0.1047783534830167,
1289
+ "grad_norm": 4.668741226196289,
1290
+ "learning_rate": 7.24e-05,
1291
+ "loss": 4.4534,
1292
+ "step": 182
1293
+ },
1294
+ {
1295
+ "epoch": 0.10535405872193437,
1296
+ "grad_norm": 7.459389686584473,
1297
+ "learning_rate": 7.280000000000001e-05,
1298
+ "loss": 5.4758,
1299
+ "step": 183
1300
+ },
1301
+ {
1302
+ "epoch": 0.10592976396085205,
1303
+ "grad_norm": 31.545869827270508,
1304
+ "learning_rate": 7.32e-05,
1305
+ "loss": 6.179,
1306
+ "step": 184
1307
+ },
1308
+ {
1309
+ "epoch": 0.10650546919976972,
1310
+ "grad_norm": 9.739182472229004,
1311
+ "learning_rate": 7.36e-05,
1312
+ "loss": 4.9662,
1313
+ "step": 185
1314
+ },
1315
+ {
1316
+ "epoch": 0.1070811744386874,
1317
+ "grad_norm": 4.12076997756958,
1318
+ "learning_rate": 7.4e-05,
1319
+ "loss": 3.88,
1320
+ "step": 186
1321
+ },
1322
+ {
1323
+ "epoch": 0.10765687967760507,
1324
+ "grad_norm": 5.808717727661133,
1325
+ "learning_rate": 7.44e-05,
1326
+ "loss": 4.6157,
1327
+ "step": 187
1328
+ },
1329
+ {
1330
+ "epoch": 0.10823258491652274,
1331
+ "grad_norm": 3.6208741664886475,
1332
+ "learning_rate": 7.48e-05,
1333
+ "loss": 3.9156,
1334
+ "step": 188
1335
+ },
1336
+ {
1337
+ "epoch": 0.10880829015544041,
1338
+ "grad_norm": 4.674955368041992,
1339
+ "learning_rate": 7.52e-05,
1340
+ "loss": 4.4751,
1341
+ "step": 189
1342
+ },
1343
+ {
1344
+ "epoch": 0.10938399539435809,
1345
+ "grad_norm": 5.331599235534668,
1346
+ "learning_rate": 7.560000000000001e-05,
1347
+ "loss": 4.3887,
1348
+ "step": 190
1349
+ },
1350
+ {
1351
+ "epoch": 0.10995970063327576,
1352
+ "grad_norm": 5.1405534744262695,
1353
+ "learning_rate": 7.6e-05,
1354
+ "loss": 4.9114,
1355
+ "step": 191
1356
+ },
1357
+ {
1358
+ "epoch": 0.11053540587219343,
1359
+ "grad_norm": 3.7066593170166016,
1360
+ "learning_rate": 7.64e-05,
1361
+ "loss": 3.8948,
1362
+ "step": 192
1363
+ },
1364
+ {
1365
+ "epoch": 0.1111111111111111,
1366
+ "grad_norm": 5.185431003570557,
1367
+ "learning_rate": 7.680000000000001e-05,
1368
+ "loss": 4.232,
1369
+ "step": 193
1370
+ },
1371
+ {
1372
+ "epoch": 0.11168681635002879,
1373
+ "grad_norm": 4.900607585906982,
1374
+ "learning_rate": 7.72e-05,
1375
+ "loss": 4.667,
1376
+ "step": 194
1377
+ },
1378
+ {
1379
+ "epoch": 0.11226252158894647,
1380
+ "grad_norm": 5.091091632843018,
1381
+ "learning_rate": 7.76e-05,
1382
+ "loss": 4.3946,
1383
+ "step": 195
1384
+ },
1385
+ {
1386
+ "epoch": 0.11283822682786414,
1387
+ "grad_norm": 4.859619617462158,
1388
+ "learning_rate": 7.800000000000001e-05,
1389
+ "loss": 4.6306,
1390
+ "step": 196
1391
+ },
1392
+ {
1393
+ "epoch": 0.11341393206678181,
1394
+ "grad_norm": 3.544200897216797,
1395
+ "learning_rate": 7.840000000000001e-05,
1396
+ "loss": 4.2118,
1397
+ "step": 197
1398
+ },
1399
+ {
1400
+ "epoch": 0.11398963730569948,
1401
+ "grad_norm": 8.28862190246582,
1402
+ "learning_rate": 7.88e-05,
1403
+ "loss": 4.4431,
1404
+ "step": 198
1405
+ },
1406
+ {
1407
+ "epoch": 0.11456534254461716,
1408
+ "grad_norm": 6.373688220977783,
1409
+ "learning_rate": 7.920000000000001e-05,
1410
+ "loss": 4.7554,
1411
+ "step": 199
1412
+ },
1413
+ {
1414
+ "epoch": 0.11514104778353483,
1415
+ "grad_norm": 6.8544392585754395,
1416
+ "learning_rate": 7.960000000000001e-05,
1417
+ "loss": 4.8723,
1418
+ "step": 200
1419
+ },
1420
+ {
1421
+ "epoch": 0.1157167530224525,
1422
+ "grad_norm": 7.207869052886963,
1423
+ "learning_rate": 8e-05,
1424
+ "loss": 4.1096,
1425
+ "step": 201
1426
+ },
1427
+ {
1428
+ "epoch": 0.11629245826137018,
1429
+ "grad_norm": 4.9073333740234375,
1430
+ "learning_rate": 8.04e-05,
1431
+ "loss": 3.6834,
1432
+ "step": 202
1433
+ },
1434
+ {
1435
+ "epoch": 0.11686816350028785,
1436
+ "grad_norm": 6.523554801940918,
1437
+ "learning_rate": 8.080000000000001e-05,
1438
+ "loss": 4.4934,
1439
+ "step": 203
1440
+ },
1441
+ {
1442
+ "epoch": 0.11744386873920552,
1443
+ "grad_norm": 9.581537246704102,
1444
+ "learning_rate": 8.120000000000001e-05,
1445
+ "loss": 4.8199,
1446
+ "step": 204
1447
+ },
1448
+ {
1449
+ "epoch": 0.1180195739781232,
1450
+ "grad_norm": 5.319664001464844,
1451
+ "learning_rate": 8.16e-05,
1452
+ "loss": 4.0881,
1453
+ "step": 205
1454
+ },
1455
+ {
1456
+ "epoch": 0.11859527921704087,
1457
+ "grad_norm": 7.609442710876465,
1458
+ "learning_rate": 8.2e-05,
1459
+ "loss": 5.1011,
1460
+ "step": 206
1461
+ },
1462
+ {
1463
+ "epoch": 0.11917098445595854,
1464
+ "grad_norm": 5.437283515930176,
1465
+ "learning_rate": 8.24e-05,
1466
+ "loss": 4.7683,
1467
+ "step": 207
1468
+ },
1469
+ {
1470
+ "epoch": 0.11974668969487623,
1471
+ "grad_norm": 9.015962600708008,
1472
+ "learning_rate": 8.28e-05,
1473
+ "loss": 5.1197,
1474
+ "step": 208
1475
+ },
1476
+ {
1477
+ "epoch": 0.1203223949337939,
1478
+ "grad_norm": 5.41486120223999,
1479
+ "learning_rate": 8.32e-05,
1480
+ "loss": 4.2228,
1481
+ "step": 209
1482
+ },
1483
+ {
1484
+ "epoch": 0.12089810017271158,
1485
+ "grad_norm": 4.068630218505859,
1486
+ "learning_rate": 8.36e-05,
1487
+ "loss": 3.9683,
1488
+ "step": 210
1489
+ },
1490
+ {
1491
+ "epoch": 0.12147380541162925,
1492
+ "grad_norm": 4.818974494934082,
1493
+ "learning_rate": 8.4e-05,
1494
+ "loss": 4.3969,
1495
+ "step": 211
1496
+ },
1497
+ {
1498
+ "epoch": 0.12204951065054692,
1499
+ "grad_norm": 8.309637069702148,
1500
+ "learning_rate": 8.44e-05,
1501
+ "loss": 4.8983,
1502
+ "step": 212
1503
+ },
1504
+ {
1505
+ "epoch": 0.1226252158894646,
1506
+ "grad_norm": 5.997379302978516,
1507
+ "learning_rate": 8.48e-05,
1508
+ "loss": 4.6983,
1509
+ "step": 213
1510
+ },
1511
+ {
1512
+ "epoch": 0.12320092112838227,
1513
+ "grad_norm": 6.416568279266357,
1514
+ "learning_rate": 8.52e-05,
1515
+ "loss": 4.6,
1516
+ "step": 214
1517
+ },
1518
+ {
1519
+ "epoch": 0.12377662636729994,
1520
+ "grad_norm": 5.038214206695557,
1521
+ "learning_rate": 8.560000000000001e-05,
1522
+ "loss": 4.1803,
1523
+ "step": 215
1524
+ },
1525
+ {
1526
+ "epoch": 0.12435233160621761,
1527
+ "grad_norm": 5.035988807678223,
1528
+ "learning_rate": 8.6e-05,
1529
+ "loss": 4.1585,
1530
+ "step": 216
1531
+ },
1532
+ {
1533
+ "epoch": 0.12492803684513529,
1534
+ "grad_norm": 6.7663726806640625,
1535
+ "learning_rate": 8.64e-05,
1536
+ "loss": 4.4256,
1537
+ "step": 217
1538
+ },
1539
+ {
1540
+ "epoch": 0.12550374208405296,
1541
+ "grad_norm": 5.394269943237305,
1542
+ "learning_rate": 8.680000000000001e-05,
1543
+ "loss": 3.9008,
1544
+ "step": 218
1545
+ },
1546
+ {
1547
+ "epoch": 0.12607944732297063,
1548
+ "grad_norm": 5.4501800537109375,
1549
+ "learning_rate": 8.72e-05,
1550
+ "loss": 3.9869,
1551
+ "step": 219
1552
+ },
1553
+ {
1554
+ "epoch": 0.1266551525618883,
1555
+ "grad_norm": 4.7380170822143555,
1556
+ "learning_rate": 8.76e-05,
1557
+ "loss": 4.0876,
1558
+ "step": 220
1559
+ },
1560
+ {
1561
+ "epoch": 0.12723085780080598,
1562
+ "grad_norm": 6.059116840362549,
1563
+ "learning_rate": 8.800000000000001e-05,
1564
+ "loss": 4.147,
1565
+ "step": 221
1566
+ },
1567
+ {
1568
+ "epoch": 0.12780656303972365,
1569
+ "grad_norm": 5.5021586418151855,
1570
+ "learning_rate": 8.840000000000001e-05,
1571
+ "loss": 4.4547,
1572
+ "step": 222
1573
+ },
1574
+ {
1575
+ "epoch": 0.12838226827864133,
1576
+ "grad_norm": 4.760106563568115,
1577
+ "learning_rate": 8.88e-05,
1578
+ "loss": 4.075,
1579
+ "step": 223
1580
+ },
1581
+ {
1582
+ "epoch": 0.128957973517559,
1583
+ "grad_norm": 7.5847649574279785,
1584
+ "learning_rate": 8.92e-05,
1585
+ "loss": 4.6163,
1586
+ "step": 224
1587
+ },
1588
+ {
1589
+ "epoch": 0.12953367875647667,
1590
+ "grad_norm": 6.257955074310303,
1591
+ "learning_rate": 8.960000000000001e-05,
1592
+ "loss": 4.6043,
1593
+ "step": 225
1594
+ },
1595
+ {
1596
+ "epoch": 0.13010938399539435,
1597
+ "grad_norm": 7.368046283721924,
1598
+ "learning_rate": 9e-05,
1599
+ "loss": 4.7961,
1600
+ "step": 226
1601
+ },
1602
+ {
1603
+ "epoch": 0.13068508923431202,
1604
+ "grad_norm": 4.385096549987793,
1605
+ "learning_rate": 9.04e-05,
1606
+ "loss": 4.1968,
1607
+ "step": 227
1608
+ },
1609
+ {
1610
+ "epoch": 0.13126079447322972,
1611
+ "grad_norm": 6.34293794631958,
1612
+ "learning_rate": 9.080000000000001e-05,
1613
+ "loss": 4.3076,
1614
+ "step": 228
1615
+ },
1616
+ {
1617
+ "epoch": 0.1318364997121474,
1618
+ "grad_norm": 6.403743267059326,
1619
+ "learning_rate": 9.120000000000001e-05,
1620
+ "loss": 3.8917,
1621
+ "step": 229
1622
+ },
1623
+ {
1624
+ "epoch": 0.13241220495106507,
1625
+ "grad_norm": 6.792156219482422,
1626
+ "learning_rate": 9.16e-05,
1627
+ "loss": 3.9843,
1628
+ "step": 230
1629
+ },
1630
+ {
1631
+ "epoch": 0.13298791018998274,
1632
+ "grad_norm": 8.062408447265625,
1633
+ "learning_rate": 9.200000000000001e-05,
1634
+ "loss": 4.2562,
1635
+ "step": 231
1636
+ },
1637
+ {
1638
+ "epoch": 0.1335636154289004,
1639
+ "grad_norm": 8.513936042785645,
1640
+ "learning_rate": 9.240000000000001e-05,
1641
+ "loss": 4.6536,
1642
+ "step": 232
1643
+ },
1644
+ {
1645
+ "epoch": 0.13413932066781808,
1646
+ "grad_norm": 5.92789363861084,
1647
+ "learning_rate": 9.28e-05,
1648
+ "loss": 4.104,
1649
+ "step": 233
1650
+ },
1651
+ {
1652
+ "epoch": 0.13471502590673576,
1653
+ "grad_norm": 44.009300231933594,
1654
+ "learning_rate": 9.320000000000002e-05,
1655
+ "loss": 4.8297,
1656
+ "step": 234
1657
+ },
1658
+ {
1659
+ "epoch": 0.13529073114565343,
1660
+ "grad_norm": 5.342921257019043,
1661
+ "learning_rate": 9.360000000000001e-05,
1662
+ "loss": 4.0662,
1663
+ "step": 235
1664
+ },
1665
+ {
1666
+ "epoch": 0.1358664363845711,
1667
+ "grad_norm": 5.618771076202393,
1668
+ "learning_rate": 9.4e-05,
1669
+ "loss": 4.1692,
1670
+ "step": 236
1671
+ },
1672
+ {
1673
+ "epoch": 0.13644214162348878,
1674
+ "grad_norm": 6.6655473709106445,
1675
+ "learning_rate": 9.44e-05,
1676
+ "loss": 4.2759,
1677
+ "step": 237
1678
+ },
1679
+ {
1680
+ "epoch": 0.13701784686240645,
1681
+ "grad_norm": 6.415508270263672,
1682
+ "learning_rate": 9.48e-05,
1683
+ "loss": 4.025,
1684
+ "step": 238
1685
+ },
1686
+ {
1687
+ "epoch": 0.13759355210132412,
1688
+ "grad_norm": 62.65280532836914,
1689
+ "learning_rate": 9.52e-05,
1690
+ "loss": 5.3187,
1691
+ "step": 239
1692
+ },
1693
+ {
1694
+ "epoch": 0.1381692573402418,
1695
+ "grad_norm": 5.9870147705078125,
1696
+ "learning_rate": 9.56e-05,
1697
+ "loss": 4.3549,
1698
+ "step": 240
1699
+ },
1700
+ {
1701
+ "epoch": 0.13874496257915947,
1702
+ "grad_norm": 6.323814868927002,
1703
+ "learning_rate": 9.6e-05,
1704
+ "loss": 4.0618,
1705
+ "step": 241
1706
+ },
1707
+ {
1708
+ "epoch": 0.13932066781807714,
1709
+ "grad_norm": 7.25873327255249,
1710
+ "learning_rate": 9.64e-05,
1711
+ "loss": 4.6113,
1712
+ "step": 242
1713
+ },
1714
+ {
1715
+ "epoch": 0.13989637305699482,
1716
+ "grad_norm": 6.708962440490723,
1717
+ "learning_rate": 9.680000000000001e-05,
1718
+ "loss": 4.2734,
1719
+ "step": 243
1720
+ },
1721
+ {
1722
+ "epoch": 0.1404720782959125,
1723
+ "grad_norm": 6.766256332397461,
1724
+ "learning_rate": 9.72e-05,
1725
+ "loss": 3.8169,
1726
+ "step": 244
1727
+ },
1728
+ {
1729
+ "epoch": 0.14104778353483016,
1730
+ "grad_norm": 9.25779914855957,
1731
+ "learning_rate": 9.76e-05,
1732
+ "loss": 4.0823,
1733
+ "step": 245
1734
+ },
1735
+ {
1736
+ "epoch": 0.14162348877374784,
1737
+ "grad_norm": 6.24402379989624,
1738
+ "learning_rate": 9.8e-05,
1739
+ "loss": 3.9761,
1740
+ "step": 246
1741
+ },
1742
+ {
1743
+ "epoch": 0.1421991940126655,
1744
+ "grad_norm": 4.627258777618408,
1745
+ "learning_rate": 9.84e-05,
1746
+ "loss": 3.3376,
1747
+ "step": 247
1748
+ },
1749
+ {
1750
+ "epoch": 0.14277489925158318,
1751
+ "grad_norm": 6.5364766120910645,
1752
+ "learning_rate": 9.88e-05,
1753
+ "loss": 3.9101,
1754
+ "step": 248
1755
+ },
1756
+ {
1757
+ "epoch": 0.14335060449050085,
1758
+ "grad_norm": 6.722381591796875,
1759
+ "learning_rate": 9.92e-05,
1760
+ "loss": 4.2916,
1761
+ "step": 249
1762
+ },
1763
+ {
1764
+ "epoch": 0.14392630972941853,
1765
+ "grad_norm": 7.2800493240356445,
1766
+ "learning_rate": 9.960000000000001e-05,
1767
+ "loss": 4.1714,
1768
+ "step": 250
1769
+ },
1770
+ {
1771
+ "epoch": 0.1445020149683362,
1772
+ "grad_norm": 9.137832641601562,
1773
+ "learning_rate": 0.0001,
1774
+ "loss": 3.9733,
1775
+ "step": 251
1776
+ },
1777
+ {
1778
+ "epoch": 0.14507772020725387,
1779
+ "grad_norm": 5.290084362030029,
1780
+ "learning_rate": 0.0001004,
1781
+ "loss": 3.8465,
1782
+ "step": 252
1783
+ },
1784
+ {
1785
+ "epoch": 0.14565342544617155,
1786
+ "grad_norm": 7.146475791931152,
1787
+ "learning_rate": 0.00010080000000000001,
1788
+ "loss": 4.154,
1789
+ "step": 253
1790
+ },
1791
+ {
1792
+ "epoch": 0.14622913068508925,
1793
+ "grad_norm": 5.462000370025635,
1794
+ "learning_rate": 0.00010120000000000001,
1795
+ "loss": 3.8403,
1796
+ "step": 254
1797
+ },
1798
+ {
1799
+ "epoch": 0.14680483592400692,
1800
+ "grad_norm": 8.053996086120605,
1801
+ "learning_rate": 0.0001016,
1802
+ "loss": 4.224,
1803
+ "step": 255
1804
+ },
1805
+ {
1806
+ "epoch": 0.1473805411629246,
1807
+ "grad_norm": 56.904518127441406,
1808
+ "learning_rate": 0.00010200000000000001,
1809
+ "loss": 5.3512,
1810
+ "step": 256
1811
+ },
1812
+ {
1813
+ "epoch": 0.14795624640184227,
1814
+ "grad_norm": 67.7396469116211,
1815
+ "learning_rate": 0.00010240000000000001,
1816
+ "loss": 4.136,
1817
+ "step": 257
1818
+ },
1819
+ {
1820
+ "epoch": 0.14853195164075994,
1821
+ "grad_norm": 5.19423770904541,
1822
+ "learning_rate": 0.0001028,
1823
+ "loss": 3.6272,
1824
+ "step": 258
1825
+ },
1826
+ {
1827
+ "epoch": 0.1491076568796776,
1828
+ "grad_norm": 6.946446418762207,
1829
+ "learning_rate": 0.0001032,
1830
+ "loss": 3.7617,
1831
+ "step": 259
1832
+ },
1833
+ {
1834
+ "epoch": 0.1496833621185953,
1835
+ "grad_norm": 6.839754104614258,
1836
+ "learning_rate": 0.00010360000000000001,
1837
+ "loss": 4.2895,
1838
+ "step": 260
1839
+ },
1840
+ {
1841
+ "epoch": 0.15025906735751296,
1842
+ "grad_norm": 7.3253254890441895,
1843
+ "learning_rate": 0.00010400000000000001,
1844
+ "loss": 4.0997,
1845
+ "step": 261
1846
+ },
1847
+ {
1848
+ "epoch": 0.15083477259643063,
1849
+ "grad_norm": 6.981521129608154,
1850
+ "learning_rate": 0.0001044,
1851
+ "loss": 3.4663,
1852
+ "step": 262
1853
+ },
1854
+ {
1855
+ "epoch": 0.1514104778353483,
1856
+ "grad_norm": 6.424066543579102,
1857
+ "learning_rate": 0.00010480000000000001,
1858
+ "loss": 4.0914,
1859
+ "step": 263
1860
+ },
1861
+ {
1862
+ "epoch": 0.15198618307426598,
1863
+ "grad_norm": 6.7790398597717285,
1864
+ "learning_rate": 0.00010520000000000001,
1865
+ "loss": 4.0818,
1866
+ "step": 264
1867
+ },
1868
+ {
1869
+ "epoch": 0.15256188831318365,
1870
+ "grad_norm": 7.887113094329834,
1871
+ "learning_rate": 0.0001056,
1872
+ "loss": 4.3784,
1873
+ "step": 265
1874
+ },
1875
+ {
1876
+ "epoch": 0.15313759355210133,
1877
+ "grad_norm": 8.3016939163208,
1878
+ "learning_rate": 0.00010600000000000002,
1879
+ "loss": 3.7843,
1880
+ "step": 266
1881
+ },
1882
+ {
1883
+ "epoch": 0.153713298791019,
1884
+ "grad_norm": 10.073237419128418,
1885
+ "learning_rate": 0.00010640000000000001,
1886
+ "loss": 4.0118,
1887
+ "step": 267
1888
+ },
1889
+ {
1890
+ "epoch": 0.15428900402993667,
1891
+ "grad_norm": 6.9664106369018555,
1892
+ "learning_rate": 0.00010680000000000001,
1893
+ "loss": 3.8644,
1894
+ "step": 268
1895
+ },
1896
+ {
1897
+ "epoch": 0.15486470926885434,
1898
+ "grad_norm": 8.479534149169922,
1899
+ "learning_rate": 0.00010720000000000002,
1900
+ "loss": 3.7009,
1901
+ "step": 269
1902
+ },
1903
+ {
1904
+ "epoch": 0.15544041450777202,
1905
+ "grad_norm": 8.317602157592773,
1906
+ "learning_rate": 0.00010760000000000001,
1907
+ "loss": 3.7018,
1908
+ "step": 270
1909
+ },
1910
+ {
1911
+ "epoch": 0.1560161197466897,
1912
+ "grad_norm": 6.020889759063721,
1913
+ "learning_rate": 0.00010800000000000001,
1914
+ "loss": 3.656,
1915
+ "step": 271
1916
+ },
1917
+ {
1918
+ "epoch": 0.15659182498560736,
1919
+ "grad_norm": 7.147673606872559,
1920
+ "learning_rate": 0.00010840000000000002,
1921
+ "loss": 3.9216,
1922
+ "step": 272
1923
+ },
1924
+ {
1925
+ "epoch": 0.15716753022452504,
1926
+ "grad_norm": 5.485556125640869,
1927
+ "learning_rate": 0.00010880000000000002,
1928
+ "loss": 3.4732,
1929
+ "step": 273
1930
+ },
1931
+ {
1932
+ "epoch": 0.1577432354634427,
1933
+ "grad_norm": 7.432086944580078,
1934
+ "learning_rate": 0.00010920000000000001,
1935
+ "loss": 3.423,
1936
+ "step": 274
1937
+ },
1938
+ {
1939
+ "epoch": 0.15831894070236038,
1940
+ "grad_norm": 6.897833824157715,
1941
+ "learning_rate": 0.00010960000000000001,
1942
+ "loss": 3.6169,
1943
+ "step": 275
1944
+ },
1945
+ {
1946
+ "epoch": 0.15889464594127806,
1947
+ "grad_norm": 7.707437992095947,
1948
+ "learning_rate": 0.00011000000000000002,
1949
+ "loss": 3.6883,
1950
+ "step": 276
1951
+ },
1952
+ {
1953
+ "epoch": 0.15947035118019573,
1954
+ "grad_norm": 5.546234607696533,
1955
+ "learning_rate": 0.00011040000000000001,
1956
+ "loss": 3.8388,
1957
+ "step": 277
1958
+ },
1959
+ {
1960
+ "epoch": 0.1600460564191134,
1961
+ "grad_norm": 10.001431465148926,
1962
+ "learning_rate": 0.00011080000000000001,
1963
+ "loss": 3.372,
1964
+ "step": 278
1965
+ },
1966
+ {
1967
+ "epoch": 0.16062176165803108,
1968
+ "grad_norm": 8.793180465698242,
1969
+ "learning_rate": 0.00011120000000000002,
1970
+ "loss": 3.7929,
1971
+ "step": 279
1972
+ },
1973
+ {
1974
+ "epoch": 0.16119746689694875,
1975
+ "grad_norm": 8.189177513122559,
1976
+ "learning_rate": 0.00011160000000000002,
1977
+ "loss": 4.0091,
1978
+ "step": 280
1979
+ },
1980
+ {
1981
+ "epoch": 0.16177317213586645,
1982
+ "grad_norm": 6.998697280883789,
1983
+ "learning_rate": 0.00011200000000000001,
1984
+ "loss": 3.648,
1985
+ "step": 281
1986
+ },
1987
+ {
1988
+ "epoch": 0.16234887737478412,
1989
+ "grad_norm": 8.115317344665527,
1990
+ "learning_rate": 0.00011240000000000002,
1991
+ "loss": 4.0327,
1992
+ "step": 282
1993
+ },
1994
+ {
1995
+ "epoch": 0.1629245826137018,
1996
+ "grad_norm": 7.597106456756592,
1997
+ "learning_rate": 0.00011279999999999999,
1998
+ "loss": 3.7811,
1999
+ "step": 283
2000
+ },
2001
+ {
2002
+ "epoch": 0.16350028785261947,
2003
+ "grad_norm": 6.518374443054199,
2004
+ "learning_rate": 0.0001132,
2005
+ "loss": 3.3359,
2006
+ "step": 284
2007
+ },
2008
+ {
2009
+ "epoch": 0.16407599309153714,
2010
+ "grad_norm": 6.962795257568359,
2011
+ "learning_rate": 0.0001136,
2012
+ "loss": 3.3726,
2013
+ "step": 285
2014
+ },
2015
+ {
2016
+ "epoch": 0.16465169833045482,
2017
+ "grad_norm": 8.1845703125,
2018
+ "learning_rate": 0.00011399999999999999,
2019
+ "loss": 4.0042,
2020
+ "step": 286
2021
+ },
2022
+ {
2023
+ "epoch": 0.1652274035693725,
2024
+ "grad_norm": 6.869271755218506,
2025
+ "learning_rate": 0.0001144,
2026
+ "loss": 3.4989,
2027
+ "step": 287
2028
+ },
2029
+ {
2030
+ "epoch": 0.16580310880829016,
2031
+ "grad_norm": 12.261098861694336,
2032
+ "learning_rate": 0.0001148,
2033
+ "loss": 4.1045,
2034
+ "step": 288
2035
+ },
2036
+ {
2037
+ "epoch": 0.16637881404720783,
2038
+ "grad_norm": 6.912962913513184,
2039
+ "learning_rate": 0.0001152,
2040
+ "loss": 3.6853,
2041
+ "step": 289
2042
+ },
2043
+ {
2044
+ "epoch": 0.1669545192861255,
2045
+ "grad_norm": 8.545379638671875,
2046
+ "learning_rate": 0.00011559999999999999,
2047
+ "loss": 3.8903,
2048
+ "step": 290
2049
+ },
2050
+ {
2051
+ "epoch": 0.16753022452504318,
2052
+ "grad_norm": 15.040228843688965,
2053
+ "learning_rate": 0.000116,
2054
+ "loss": 3.4079,
2055
+ "step": 291
2056
+ },
2057
+ {
2058
+ "epoch": 0.16810592976396085,
2059
+ "grad_norm": 7.038132667541504,
2060
+ "learning_rate": 0.0001164,
2061
+ "loss": 3.7119,
2062
+ "step": 292
2063
+ },
2064
+ {
2065
+ "epoch": 0.16868163500287853,
2066
+ "grad_norm": 6.259817123413086,
2067
+ "learning_rate": 0.00011679999999999999,
2068
+ "loss": 3.4931,
2069
+ "step": 293
2070
+ },
2071
+ {
2072
+ "epoch": 0.1692573402417962,
2073
+ "grad_norm": 6.947351455688477,
2074
+ "learning_rate": 0.0001172,
2075
+ "loss": 3.677,
2076
+ "step": 294
2077
+ },
2078
+ {
2079
+ "epoch": 0.16983304548071387,
2080
+ "grad_norm": 14.260014533996582,
2081
+ "learning_rate": 0.0001176,
2082
+ "loss": 3.9591,
2083
+ "step": 295
2084
+ },
2085
+ {
2086
+ "epoch": 0.17040875071963155,
2087
+ "grad_norm": 6.70070743560791,
2088
+ "learning_rate": 0.000118,
2089
+ "loss": 3.2433,
2090
+ "step": 296
2091
+ },
2092
+ {
2093
+ "epoch": 0.17098445595854922,
2094
+ "grad_norm": 11.697699546813965,
2095
+ "learning_rate": 0.0001184,
2096
+ "loss": 4.0909,
2097
+ "step": 297
2098
+ },
2099
+ {
2100
+ "epoch": 0.1715601611974669,
2101
+ "grad_norm": 10.029029846191406,
2102
+ "learning_rate": 0.0001188,
2103
+ "loss": 3.5743,
2104
+ "step": 298
2105
+ },
2106
+ {
2107
+ "epoch": 0.17213586643638457,
2108
+ "grad_norm": 6.6930365562438965,
2109
+ "learning_rate": 0.0001192,
2110
+ "loss": 3.2007,
2111
+ "step": 299
2112
+ },
2113
+ {
2114
+ "epoch": 0.17271157167530224,
2115
+ "grad_norm": 21.772619247436523,
2116
+ "learning_rate": 0.00011960000000000001,
2117
+ "loss": 3.8505,
2118
+ "step": 300
2119
+ },
2120
+ {
2121
+ "epoch": 0.1732872769142199,
2122
+ "grad_norm": 9.126256942749023,
2123
+ "learning_rate": 0.00012,
2124
+ "loss": 3.5777,
2125
+ "step": 301
2126
+ },
2127
+ {
2128
+ "epoch": 0.17386298215313759,
2129
+ "grad_norm": 7.574469566345215,
2130
+ "learning_rate": 0.0001204,
2131
+ "loss": 3.5329,
2132
+ "step": 302
2133
+ },
2134
+ {
2135
+ "epoch": 0.17443868739205526,
2136
+ "grad_norm": 6.436075687408447,
2137
+ "learning_rate": 0.0001208,
2138
+ "loss": 3.279,
2139
+ "step": 303
2140
+ },
2141
+ {
2142
+ "epoch": 0.17501439263097293,
2143
+ "grad_norm": 5.945929527282715,
2144
+ "learning_rate": 0.0001212,
2145
+ "loss": 3.4338,
2146
+ "step": 304
2147
+ },
2148
+ {
2149
+ "epoch": 0.1755900978698906,
2150
+ "grad_norm": 5.7057785987854,
2151
+ "learning_rate": 0.0001216,
2152
+ "loss": 3.2369,
2153
+ "step": 305
2154
+ },
2155
+ {
2156
+ "epoch": 0.17616580310880828,
2157
+ "grad_norm": 9.411810874938965,
2158
+ "learning_rate": 0.000122,
2159
+ "loss": 3.5364,
2160
+ "step": 306
2161
+ },
2162
+ {
2163
+ "epoch": 0.17674150834772595,
2164
+ "grad_norm": 8.872260093688965,
2165
+ "learning_rate": 0.0001224,
2166
+ "loss": 3.7803,
2167
+ "step": 307
2168
+ },
2169
+ {
2170
+ "epoch": 0.17731721358664365,
2171
+ "grad_norm": 46.1115837097168,
2172
+ "learning_rate": 0.0001228,
2173
+ "loss": 3.7188,
2174
+ "step": 308
2175
+ },
2176
+ {
2177
+ "epoch": 0.17789291882556132,
2178
+ "grad_norm": 48.33805465698242,
2179
+ "learning_rate": 0.0001232,
2180
+ "loss": 3.7491,
2181
+ "step": 309
2182
+ },
2183
+ {
2184
+ "epoch": 0.178468624064479,
2185
+ "grad_norm": 7.272097587585449,
2186
+ "learning_rate": 0.0001236,
2187
+ "loss": 3.559,
2188
+ "step": 310
2189
+ },
2190
+ {
2191
+ "epoch": 0.17904432930339667,
2192
+ "grad_norm": 7.471408367156982,
2193
+ "learning_rate": 0.000124,
2194
+ "loss": 3.6014,
2195
+ "step": 311
2196
+ },
2197
+ {
2198
+ "epoch": 0.17962003454231434,
2199
+ "grad_norm": 11.095893859863281,
2200
+ "learning_rate": 0.00012440000000000002,
2201
+ "loss": 3.5741,
2202
+ "step": 312
2203
+ },
2204
+ {
2205
+ "epoch": 0.18019573978123202,
2206
+ "grad_norm": 8.782601356506348,
2207
+ "learning_rate": 0.0001248,
2208
+ "loss": 3.2475,
2209
+ "step": 313
2210
+ },
2211
+ {
2212
+ "epoch": 0.1807714450201497,
2213
+ "grad_norm": 7.485610485076904,
2214
+ "learning_rate": 0.0001252,
2215
+ "loss": 3.0304,
2216
+ "step": 314
2217
+ },
2218
+ {
2219
+ "epoch": 0.18134715025906736,
2220
+ "grad_norm": 7.794425964355469,
2221
+ "learning_rate": 0.00012560000000000002,
2222
+ "loss": 2.9428,
2223
+ "step": 315
2224
+ },
2225
+ {
2226
+ "epoch": 0.18192285549798504,
2227
+ "grad_norm": 6.470662593841553,
2228
+ "learning_rate": 0.000126,
2229
+ "loss": 3.4341,
2230
+ "step": 316
2231
+ },
2232
+ {
2233
+ "epoch": 0.1824985607369027,
2234
+ "grad_norm": 10.054426193237305,
2235
+ "learning_rate": 0.0001264,
2236
+ "loss": 2.941,
2237
+ "step": 317
2238
+ },
2239
+ {
2240
+ "epoch": 0.18307426597582038,
2241
+ "grad_norm": 93.38629150390625,
2242
+ "learning_rate": 0.00012680000000000002,
2243
+ "loss": 4.2291,
2244
+ "step": 318
2245
+ },
2246
+ {
2247
+ "epoch": 0.18364997121473806,
2248
+ "grad_norm": 9.805968284606934,
2249
+ "learning_rate": 0.0001272,
2250
+ "loss": 3.0641,
2251
+ "step": 319
2252
+ },
2253
+ {
2254
+ "epoch": 0.18422567645365573,
2255
+ "grad_norm": 6.104334831237793,
2256
+ "learning_rate": 0.0001276,
2257
+ "loss": 3.0856,
2258
+ "step": 320
2259
+ },
2260
+ {
2261
+ "epoch": 0.1848013816925734,
2262
+ "grad_norm": 8.24195384979248,
2263
+ "learning_rate": 0.00012800000000000002,
2264
+ "loss": 3.0774,
2265
+ "step": 321
2266
+ },
2267
+ {
2268
+ "epoch": 0.18537708693149108,
2269
+ "grad_norm": 6.327628135681152,
2270
+ "learning_rate": 0.0001284,
2271
+ "loss": 3.0826,
2272
+ "step": 322
2273
+ },
2274
+ {
2275
+ "epoch": 0.18595279217040875,
2276
+ "grad_norm": 11.529990196228027,
2277
+ "learning_rate": 0.00012880000000000001,
2278
+ "loss": 3.7882,
2279
+ "step": 323
2280
+ },
2281
+ {
2282
+ "epoch": 0.18652849740932642,
2283
+ "grad_norm": 9.700762748718262,
2284
+ "learning_rate": 0.00012920000000000002,
2285
+ "loss": 3.4958,
2286
+ "step": 324
2287
+ },
2288
+ {
2289
+ "epoch": 0.1871042026482441,
2290
+ "grad_norm": 10.289152145385742,
2291
+ "learning_rate": 0.0001296,
2292
+ "loss": 3.3652,
2293
+ "step": 325
2294
+ },
2295
+ {
2296
+ "epoch": 0.18767990788716177,
2297
+ "grad_norm": 6.888269901275635,
2298
+ "learning_rate": 0.00013000000000000002,
2299
+ "loss": 3.1086,
2300
+ "step": 326
2301
+ },
2302
+ {
2303
+ "epoch": 0.18825561312607944,
2304
+ "grad_norm": 9.220719337463379,
2305
+ "learning_rate": 0.0001304,
2306
+ "loss": 3.5314,
2307
+ "step": 327
2308
+ },
2309
+ {
2310
+ "epoch": 0.1888313183649971,
2311
+ "grad_norm": 9.044048309326172,
2312
+ "learning_rate": 0.0001308,
2313
+ "loss": 2.943,
2314
+ "step": 328
2315
+ },
2316
+ {
2317
+ "epoch": 0.1894070236039148,
2318
+ "grad_norm": 11.338268280029297,
2319
+ "learning_rate": 0.00013120000000000002,
2320
+ "loss": 3.4617,
2321
+ "step": 329
2322
+ },
2323
+ {
2324
+ "epoch": 0.18998272884283246,
2325
+ "grad_norm": 5.949525833129883,
2326
+ "learning_rate": 0.0001316,
2327
+ "loss": 2.8324,
2328
+ "step": 330
2329
+ },
2330
+ {
2331
+ "epoch": 0.19055843408175013,
2332
+ "grad_norm": 9.158703804016113,
2333
+ "learning_rate": 0.000132,
2334
+ "loss": 3.1961,
2335
+ "step": 331
2336
+ },
2337
+ {
2338
+ "epoch": 0.1911341393206678,
2339
+ "grad_norm": 8.708706855773926,
2340
+ "learning_rate": 0.00013240000000000002,
2341
+ "loss": 3.1941,
2342
+ "step": 332
2343
+ },
2344
+ {
2345
+ "epoch": 0.19170984455958548,
2346
+ "grad_norm": 10.610583305358887,
2347
+ "learning_rate": 0.0001328,
2348
+ "loss": 3.3617,
2349
+ "step": 333
2350
+ },
2351
+ {
2352
+ "epoch": 0.19228554979850315,
2353
+ "grad_norm": 8.023892402648926,
2354
+ "learning_rate": 0.0001332,
2355
+ "loss": 3.1775,
2356
+ "step": 334
2357
+ },
2358
+ {
2359
+ "epoch": 0.19286125503742085,
2360
+ "grad_norm": 7.895623683929443,
2361
+ "learning_rate": 0.00013360000000000002,
2362
+ "loss": 3.1033,
2363
+ "step": 335
2364
+ },
2365
+ {
2366
+ "epoch": 0.19343696027633853,
2367
+ "grad_norm": 6.376975059509277,
2368
+ "learning_rate": 0.000134,
2369
+ "loss": 2.808,
2370
+ "step": 336
2371
+ },
2372
+ {
2373
+ "epoch": 0.1940126655152562,
2374
+ "grad_norm": 5.185142993927002,
2375
+ "learning_rate": 0.00013440000000000001,
2376
+ "loss": 2.8337,
2377
+ "step": 337
2378
+ },
2379
+ {
2380
+ "epoch": 0.19458837075417387,
2381
+ "grad_norm": 6.408693790435791,
2382
+ "learning_rate": 0.00013480000000000002,
2383
+ "loss": 3.0604,
2384
+ "step": 338
2385
+ },
2386
+ {
2387
+ "epoch": 0.19516407599309155,
2388
+ "grad_norm": 21.610239028930664,
2389
+ "learning_rate": 0.0001352,
2390
+ "loss": 3.431,
2391
+ "step": 339
2392
+ },
2393
+ {
2394
+ "epoch": 0.19573978123200922,
2395
+ "grad_norm": 9.485398292541504,
2396
+ "learning_rate": 0.00013560000000000002,
2397
+ "loss": 3.2208,
2398
+ "step": 340
2399
+ },
2400
+ {
2401
+ "epoch": 0.1963154864709269,
2402
+ "grad_norm": 6.460340976715088,
2403
+ "learning_rate": 0.00013600000000000003,
2404
+ "loss": 2.793,
2405
+ "step": 341
2406
+ },
2407
+ {
2408
+ "epoch": 0.19689119170984457,
2409
+ "grad_norm": 5.64215612411499,
2410
+ "learning_rate": 0.0001364,
2411
+ "loss": 2.8589,
2412
+ "step": 342
2413
+ },
2414
+ {
2415
+ "epoch": 0.19746689694876224,
2416
+ "grad_norm": 6.9033427238464355,
2417
+ "learning_rate": 0.00013680000000000002,
2418
+ "loss": 3.1031,
2419
+ "step": 343
2420
+ },
2421
+ {
2422
+ "epoch": 0.1980426021876799,
2423
+ "grad_norm": 5.724493980407715,
2424
+ "learning_rate": 0.00013720000000000003,
2425
+ "loss": 2.8605,
2426
+ "step": 344
2427
+ },
2428
+ {
2429
+ "epoch": 0.19861830742659758,
2430
+ "grad_norm": 15.779448509216309,
2431
+ "learning_rate": 0.00013759999999999998,
2432
+ "loss": 3.2151,
2433
+ "step": 345
2434
+ },
2435
+ {
2436
+ "epoch": 0.19919401266551526,
2437
+ "grad_norm": 6.960752964019775,
2438
+ "learning_rate": 0.000138,
2439
+ "loss": 2.8537,
2440
+ "step": 346
2441
+ },
2442
+ {
2443
+ "epoch": 0.19976971790443293,
2444
+ "grad_norm": 8.871850967407227,
2445
+ "learning_rate": 0.0001384,
2446
+ "loss": 2.7536,
2447
+ "step": 347
2448
+ },
2449
+ {
2450
+ "epoch": 0.2003454231433506,
2451
+ "grad_norm": 6.670348644256592,
2452
+ "learning_rate": 0.00013879999999999999,
2453
+ "loss": 2.9525,
2454
+ "step": 348
2455
+ }
2456
+ ],
2457
+ "logging_steps": 1,
2458
+ "max_steps": 1737,
2459
+ "num_input_tokens_seen": 0,
2460
+ "num_train_epochs": 1,
2461
+ "save_steps": 348,
2462
+ "stateful_callbacks": {
2463
+ "TrainerControl": {
2464
+ "args": {
2465
+ "should_epoch_stop": false,
2466
+ "should_evaluate": false,
2467
+ "should_log": false,
2468
+ "should_save": true,
2469
+ "should_training_stop": false
2470
+ },
2471
+ "attributes": {}
2472
+ }
2473
+ },
2474
+ "total_flos": 4.022631528658895e+18,
2475
+ "train_batch_size": 2,
2476
+ "trial_name": null,
2477
+ "trial_params": null
2478
+ }
checkpoint-348/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34e6c29f7b8116a03a0ae69dc83decfe763ea99a6fb5eb5ddd5b64f81364fadc
3
+ size 8824
checkpoint-348/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-348/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)