sigridjineth commited on
Commit
88ffb82
·
verified ·
1 Parent(s): b6d117d
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "HyperCLOVAXForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_multiplier": 0.0078125,
8
+ "attn_pdrop": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
11
+ "AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
12
+ "AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
13
+ },
14
+ "bos_token_id": 100257,
15
+ "deepconf_disable": false,
16
+ "deepconf_enable": null,
17
+ "deepconf_threshold": -3.5,
18
+ "deepconf_top_r": 5,
19
+ "deepconf_warmup_tokens": 0,
20
+ "deepconf_window": 512,
21
+ "embd_pdrop": 0.0,
22
+ "embedding_multiplier": 10.0,
23
+ "end_token_id": 100257,
24
+ "eos_token_id": 100257,
25
+ "head_dim": 128,
26
+ "hidden_act": "silu",
27
+ "hidden_size": 6144,
28
+ "initializer_range": 0.012727922061357854,
29
+ "intermediate_size": 14336,
30
+ "logits_scaling": 0.125,
31
+ "max_position_embeddings": 131072,
32
+ "mlp_bias": false,
33
+ "model_type": "hyperclovax",
34
+ "num_attention_heads": 48,
35
+ "num_hidden_layers": 38,
36
+ "num_key_value_heads": 8,
37
+ "pad_token_id": 100257,
38
+ "pretraining_tp": 1,
39
+ "resid_pdrop": 0.0,
40
+ "residual_multiplier": 1.0,
41
+ "rms_norm_eps": 1e-05,
42
+ "rope_scaling": null,
43
+ "rope_theta": 100000000,
44
+ "summary_first_dropout": 0.0,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "float32",
47
+ "transformers_version": "4.52.4",
48
+ "use_cache": false,
49
+ "use_post_norm": true,
50
+ "vocab_size": 110592
51
+ }
configuration_hyperclovax.py ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # This file was created for the HyperCLOVA X SEED 14B Think architecture.
3
+ # partially copied and modified from https://github.com/huggingface/transformers
4
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
7
+ # and OPT implementations in this library. It has been modified from its
8
+ # original forms to accommodate minor architectural differences compared
9
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
10
+ #
11
+ # Licensed under the Apache License, Version 2.0 (the "License");
12
+ # you may not use this file except in compliance with the License.
13
+ # You may obtain a copy of the License at
14
+ #
15
+ # http://www.apache.org/licenses/LICENSE-2.0
16
+ #
17
+ # Unless required by applicable law or agreed to in writing, software
18
+ # distributed under the License is distributed on an "AS IS" BASIS,
19
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20
+ # See the License for the specific language governing permissions and
21
+ # limitations under the License.
22
+ """HyperCLOVAX model configuration"""
23
+
24
+ from transformers.configuration_utils import PretrainedConfig
25
+ from typing import Optional
26
+
27
+ class HyperCLOVAXConfig(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`HyperCLOVAXModel`]. It is used to instantiate an HyperCLOVAX
30
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
31
+ defaults will yield a similar configuration to that of the HyperCLOVAX.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the HyperCLOVAX model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`HyperCLOVAXModel`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer decoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer decoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with.
61
+ initializer_range (`float`, *optional*, defaults to 0.02):
62
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
63
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
64
+ The epsilon used by the rms normalization layers.
65
+ use_cache (`bool`, *optional*, defaults to `True`):
66
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
67
+ relevant if `config.is_decoder=True`.
68
+ pad_token_id (`int`, *optional*):
69
+ Padding token id.
70
+ bos_token_id (`int`, *optional*, defaults to 1):
71
+ Beginning of stream token id.
72
+ eos_token_id (`int`, *optional*, defaults to 2):
73
+ End of stream token id.
74
+ pretraining_tp (`int`, *optional*, defaults to 1):
75
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
76
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
77
+ understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
78
+ results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`Dict`, *optional*):
84
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
85
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
86
+ accordingly.
87
+ Expected contents:
88
+ `rope_type` (`str`):
89
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
90
+ 'llama3'], with 'default' being the original RoPE implementation.
91
+ `factor` (`float`, *optional*):
92
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
93
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
94
+ original maximum pre-trained length.
95
+ `original_max_position_embeddings` (`int`, *optional*):
96
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
97
+ pretraining.
98
+ `attention_factor` (`float`, *optional*):
99
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
100
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
101
+ `factor` field to infer the suggested value.
102
+ `beta_fast` (`float`, *optional*):
103
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
104
+ ramp function. If unspecified, it defaults to 32.
105
+ `beta_slow` (`float`, *optional*):
106
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
107
+ ramp function. If unspecified, it defaults to 1.
108
+ `short_factor` (`List[float]`, *optional*):
109
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
110
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
111
+ size divided by the number of attention heads divided by 2
112
+ `long_factor` (`List[float]`, *optional*):
113
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
114
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
115
+ size divided by the number of attention heads divided by 2
116
+ `low_freq_factor` (`float`, *optional*):
117
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
118
+ `high_freq_factor` (`float`, *optional*):
119
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
120
+ attention_bias (`bool`, *optional*, defaults to `False`):
121
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
122
+ attention_dropout (`float`, *optional*, defaults to 0.0):
123
+ The dropout ratio for the attention probabilities.
124
+ mlp_bias (`bool`, *optional*, defaults to `False`):
125
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
126
+ head_dim (`int`, *optional*):
127
+ The attention head dimension. If None, it will default to hidden_size // num_heads
128
+ embedding_multiplier (`float, *optional*, defaults to `None`):
129
+ Multiplier applied to the embedding weights. If `None`, it is equivalent to `1.0`.
130
+ logits_scaling (`float, *optional*, defaults to `None`):
131
+ Scaling factor for logits. If `None`, it is equivalent to `1.0`.
132
+ attention_multiplier (`float, *optional*, defaults to `None`):
133
+ Multiplier applied to the attention weights. If `None`, it is equivalent to `self.head_dim ** -0.5`.
134
+ residual_multiplier (`float, *optional*, defaults to `None`):
135
+ Scaling factor for residual connections. If `None`, it is equivalent to `1.0`.
136
+ use_post_norm (`bool`, *optional*, defaults to `False`):
137
+ Determines whether to apply Peri-Layer Normalization. Set to True to enable this feature.
138
+
139
+ ```python
140
+ >>> from transformers import HyperCLOVAXModel, HyperCLOVAXConfig
141
+
142
+ >>> # Initializing a HyperCLOVAX HyperCLOVAX style configuration
143
+ >>> configuration = HyperCLOVAXConfig()
144
+
145
+ >>> # Initializing a model from the HyperCLOVAX style configuration
146
+ >>> model = HyperCLOVAXModel(configuration)
147
+
148
+ >>> # Accessing the model configuration
149
+ >>> configuration = model.config
150
+ ```"""
151
+
152
+ model_type = "hyperclovax"
153
+ keys_to_ignore_at_inference = ["past_key_values"]
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=32000,
158
+ hidden_size=4096,
159
+ intermediate_size=11008,
160
+ num_hidden_layers=32,
161
+ num_attention_heads=32,
162
+ num_key_value_heads=None,
163
+ hidden_act="silu",
164
+ max_position_embeddings=2048,
165
+ initializer_range=0.02,
166
+ rms_norm_eps=1e-6,
167
+ use_cache=True,
168
+ pad_token_id=None,
169
+ bos_token_id=1,
170
+ eos_token_id=2,
171
+ pretraining_tp=1,
172
+ tie_word_embeddings=False,
173
+ rope_theta=10000.0,
174
+ rope_scaling=None,
175
+ attention_bias=False,
176
+ attention_dropout=0.0,
177
+ mlp_bias=False,
178
+ head_dim=None,
179
+ embedding_multiplier=None, # MuP
180
+ logits_scaling=None, # MuP
181
+ attention_multiplier=None, # MuP
182
+ residual_multiplier=None, # MuP
183
+ use_post_norm=False, # Peri-LN (post-norm)
184
+ # ---- DeepConf (online early-stop) options ----
185
+ deepconf_enable: Optional[bool] = None, # None=unset(keeps default ON), True/False=explicitly set
186
+ deepconf_disable: bool = False, # True to force OFF (overrides enable)
187
+ deepconf_window: int = 512,
188
+ deepconf_top_r: int = 5,
189
+ deepconf_threshold: float = -3.5,
190
+ deepconf_warmup_tokens: int = 0,
191
+ auto_map={
192
+ "AutoConfig": "configuration_hyperclovax.HyperCLOVAXConfig",
193
+ "AutoModel": "modeling_hyperclovax.HyperCLOVAXModel",
194
+ "AutoModelForCausalLM": "modeling_hyperclovax.HyperCLOVAXForCausalLM"
195
+ },
196
+ **kwargs,
197
+ ):
198
+ self.vocab_size = vocab_size
199
+ self.max_position_embeddings = max_position_embeddings
200
+ self.hidden_size = hidden_size
201
+ self.intermediate_size = intermediate_size
202
+ self.num_hidden_layers = num_hidden_layers
203
+ self.num_attention_heads = num_attention_heads
204
+
205
+ # for backward compatibility
206
+ if num_key_value_heads is None:
207
+ num_key_value_heads = num_attention_heads
208
+
209
+ self.num_key_value_heads = num_key_value_heads
210
+ self.hidden_act = hidden_act
211
+ self.initializer_range = initializer_range
212
+ self.rms_norm_eps = rms_norm_eps
213
+ self.pretraining_tp = pretraining_tp
214
+ self.use_cache = use_cache
215
+ self.rope_theta = rope_theta
216
+ self.rope_scaling = rope_scaling
217
+ self.attention_bias = attention_bias
218
+ self.attention_dropout = attention_dropout
219
+ self.mlp_bias = mlp_bias
220
+ self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
221
+ # Validate the correctness of rotary position embeddings parameters
222
+ # BC: if there is a 'type' field, copy it it to 'rope_type'.
223
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
224
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
225
+ # rope_config_validation(self)
226
+
227
+ # MuP
228
+ self.embedding_multiplier = embedding_multiplier if embedding_multiplier is not None else 1.0
229
+ self.logits_scaling = logits_scaling if logits_scaling is not None else 1.0
230
+ self.attention_multiplier = attention_multiplier if attention_multiplier is not None else self.head_dim ** -0.5
231
+ self.residual_multiplier = residual_multiplier if residual_multiplier is not None else 1.0
232
+
233
+ # Peri-LN (post-norm)
234
+ self.use_post_norm = use_post_norm
235
+ # DeepConf (store defaults; ENV vars will take precedence in the modeling file)
236
+ self.deepconf_enable = deepconf_enable
237
+ self.deepconf_disable = deepconf_disable
238
+ self.deepconf_window = int(deepconf_window)
239
+ self.deepconf_top_r = int(deepconf_top_r)
240
+ self.deepconf_threshold = float(deepconf_threshold)
241
+ self.deepconf_warmup_tokens = int(deepconf_warmup_tokens)
242
+
243
+ super().__init__(
244
+ pad_token_id=pad_token_id,
245
+ bos_token_id=bos_token_id,
246
+ eos_token_id=eos_token_id,
247
+ tie_word_embeddings=tie_word_embeddings,
248
+ auto_map=auto_map,
249
+ **kwargs,
250
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100257,
4
+ "eos_token_id": 100257,
5
+ "pad_token_id": 100257,
6
+ "transformers_version": "4.52.4",
7
+ "use_cache": false
8
+ }
model-00001-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:305362a08287f1a07c8901b17569030003342501439732b35372f141488e624d
3
+ size 4831938472
model-00002-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff239283211a4d509ae03a47d26eb81981a1e6629b8593e7fea6f7bc982cc7ee
3
+ size 4932899128
model-00003-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87408267364edb5e0ad365c01d33272ecd767eef3a59dcae20b5c4e2b80d2d9
3
+ size 4932800744
model-00004-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34be38a9cd94474e2145567c0d8d8e772e38811a6b7cc7ff21ad32b78cd82e28
3
+ size 4932899160
model-00005-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04b93ef8634259a055d34eda87bc7f0c07493be1729979da93c7fd0b63b4cfc8
3
+ size 4932800784
model-00006-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0166c99db8788a872fe9677d88095116586807e61466caeffb1b317815025485
3
+ size 4932899168
model-00007-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3091a6c988544d07a79a12ac4e6327d0b80802af7463f657fa55706760a7b16
3
+ size 4932800784
model-00008-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437804c0b8b0ac88e24253304a7c0d27c0e94ee54fdba2d6b6474f0fcfd71f77
3
+ size 4932899168
model-00009-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bae7aa1fb3ec4ac0d8a9046a15b8674d80b1165ec423b66c3429416846bd076
3
+ size 4932800784
model-00010-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17ec60ba7881c3afa594a584bde88d806582eab0f7768a70549d377b06544c27
3
+ size 4932899168
model-00011-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c2e182da134b1702e84be4f6bff0157182bb8870963b470da45acc4fd9102f5
3
+ size 4932800784
model-00012-of-00012.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ced46cb6d54cc2ace518803b1d350211b110560a7d841412b61d22b09f55e
3
+ size 4832061536
model.safetensors.index.json ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 58992451584
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00012-of-00012.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00012.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00012.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00012.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00012.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00012.safetensors",
13
+ "model.layers.0.post_norm1.weight": "model-00001-of-00012.safetensors",
14
+ "model.layers.0.post_norm2.weight": "model-00001-of-00012.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00012.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00012.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
24
+ "model.layers.1.post_norm1.weight": "model-00002-of-00012.safetensors",
25
+ "model.layers.1.post_norm2.weight": "model-00002-of-00012.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00012.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00012.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00012.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00012.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00004-of-00012.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
35
+ "model.layers.10.post_norm1.weight": "model-00004-of-00012.safetensors",
36
+ "model.layers.10.post_norm2.weight": "model-00004-of-00012.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00012.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
46
+ "model.layers.11.post_norm1.weight": "model-00004-of-00012.safetensors",
47
+ "model.layers.11.post_norm2.weight": "model-00004-of-00012.safetensors",
48
+ "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00012.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
57
+ "model.layers.12.post_norm1.weight": "model-00005-of-00012.safetensors",
58
+ "model.layers.12.post_norm2.weight": "model-00005-of-00012.safetensors",
59
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00005-of-00012.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
68
+ "model.layers.13.post_norm1.weight": "model-00005-of-00012.safetensors",
69
+ "model.layers.13.post_norm2.weight": "model-00005-of-00012.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00005-of-00012.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00005-of-00012.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00005-of-00012.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00005-of-00012.safetensors",
79
+ "model.layers.14.post_norm1.weight": "model-00005-of-00012.safetensors",
80
+ "model.layers.14.post_norm2.weight": "model-00005-of-00012.safetensors",
81
+ "model.layers.14.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00012.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00005-of-00012.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
90
+ "model.layers.15.post_norm1.weight": "model-00006-of-00012.safetensors",
91
+ "model.layers.15.post_norm2.weight": "model-00006-of-00012.safetensors",
92
+ "model.layers.15.self_attn.k_proj.weight": "model-00005-of-00012.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00005-of-00012.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00005-of-00012.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00005-of-00012.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00006-of-00012.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
101
+ "model.layers.16.post_norm1.weight": "model-00006-of-00012.safetensors",
102
+ "model.layers.16.post_norm2.weight": "model-00006-of-00012.safetensors",
103
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00006-of-00012.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
112
+ "model.layers.17.post_norm1.weight": "model-00006-of-00012.safetensors",
113
+ "model.layers.17.post_norm2.weight": "model-00006-of-00012.safetensors",
114
+ "model.layers.17.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00006-of-00012.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00006-of-00012.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00006-of-00012.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00006-of-00012.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00006-of-00012.safetensors",
123
+ "model.layers.18.post_norm1.weight": "model-00006-of-00012.safetensors",
124
+ "model.layers.18.post_norm2.weight": "model-00006-of-00012.safetensors",
125
+ "model.layers.18.self_attn.k_proj.weight": "model-00006-of-00012.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00006-of-00012.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00006-of-00012.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00006-of-00012.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00007-of-00012.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
134
+ "model.layers.19.post_norm1.weight": "model-00007-of-00012.safetensors",
135
+ "model.layers.19.post_norm2.weight": "model-00007-of-00012.safetensors",
136
+ "model.layers.19.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00012.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
145
+ "model.layers.2.post_norm1.weight": "model-00002-of-00012.safetensors",
146
+ "model.layers.2.post_norm2.weight": "model-00002-of-00012.safetensors",
147
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00007-of-00012.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
156
+ "model.layers.20.post_norm1.weight": "model-00007-of-00012.safetensors",
157
+ "model.layers.20.post_norm2.weight": "model-00007-of-00012.safetensors",
158
+ "model.layers.20.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00007-of-00012.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00007-of-00012.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00007-of-00012.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00007-of-00012.safetensors",
167
+ "model.layers.21.post_norm1.weight": "model-00007-of-00012.safetensors",
168
+ "model.layers.21.post_norm2.weight": "model-00007-of-00012.safetensors",
169
+ "model.layers.21.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00008-of-00012.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00007-of-00012.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
178
+ "model.layers.22.post_norm1.weight": "model-00008-of-00012.safetensors",
179
+ "model.layers.22.post_norm2.weight": "model-00008-of-00012.safetensors",
180
+ "model.layers.22.self_attn.k_proj.weight": "model-00007-of-00012.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00007-of-00012.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00007-of-00012.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00007-of-00012.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00008-of-00012.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
189
+ "model.layers.23.post_norm1.weight": "model-00008-of-00012.safetensors",
190
+ "model.layers.23.post_norm2.weight": "model-00008-of-00012.safetensors",
191
+ "model.layers.23.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00008-of-00012.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
200
+ "model.layers.24.post_norm1.weight": "model-00008-of-00012.safetensors",
201
+ "model.layers.24.post_norm2.weight": "model-00008-of-00012.safetensors",
202
+ "model.layers.24.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00008-of-00012.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00008-of-00012.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00008-of-00012.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00008-of-00012.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00008-of-00012.safetensors",
211
+ "model.layers.25.post_norm1.weight": "model-00008-of-00012.safetensors",
212
+ "model.layers.25.post_norm2.weight": "model-00008-of-00012.safetensors",
213
+ "model.layers.25.self_attn.k_proj.weight": "model-00008-of-00012.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00008-of-00012.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00008-of-00012.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00008-of-00012.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00009-of-00012.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
222
+ "model.layers.26.post_norm1.weight": "model-00009-of-00012.safetensors",
223
+ "model.layers.26.post_norm2.weight": "model-00009-of-00012.safetensors",
224
+ "model.layers.26.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00009-of-00012.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
233
+ "model.layers.27.post_norm1.weight": "model-00009-of-00012.safetensors",
234
+ "model.layers.27.post_norm2.weight": "model-00009-of-00012.safetensors",
235
+ "model.layers.27.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00009-of-00012.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00009-of-00012.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00009-of-00012.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00009-of-00012.safetensors",
244
+ "model.layers.28.post_norm1.weight": "model-00009-of-00012.safetensors",
245
+ "model.layers.28.post_norm2.weight": "model-00009-of-00012.safetensors",
246
+ "model.layers.28.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
247
+ "model.layers.28.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00010-of-00012.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00009-of-00012.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
255
+ "model.layers.29.post_norm1.weight": "model-00010-of-00012.safetensors",
256
+ "model.layers.29.post_norm2.weight": "model-00010-of-00012.safetensors",
257
+ "model.layers.29.self_attn.k_proj.weight": "model-00009-of-00012.safetensors",
258
+ "model.layers.29.self_attn.o_proj.weight": "model-00009-of-00012.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00009-of-00012.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00009-of-00012.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00012.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
266
+ "model.layers.3.post_norm1.weight": "model-00002-of-00012.safetensors",
267
+ "model.layers.3.post_norm2.weight": "model-00002-of-00012.safetensors",
268
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
269
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00010-of-00012.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
277
+ "model.layers.30.post_norm1.weight": "model-00010-of-00012.safetensors",
278
+ "model.layers.30.post_norm2.weight": "model-00010-of-00012.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
280
+ "model.layers.30.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00010-of-00012.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
288
+ "model.layers.31.post_norm1.weight": "model-00010-of-00012.safetensors",
289
+ "model.layers.31.post_norm2.weight": "model-00010-of-00012.safetensors",
290
+ "model.layers.31.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
291
+ "model.layers.31.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00010-of-00012.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00010-of-00012.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00010-of-00012.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00010-of-00012.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00010-of-00012.safetensors",
299
+ "model.layers.32.post_norm1.weight": "model-00010-of-00012.safetensors",
300
+ "model.layers.32.post_norm2.weight": "model-00010-of-00012.safetensors",
301
+ "model.layers.32.self_attn.k_proj.weight": "model-00010-of-00012.safetensors",
302
+ "model.layers.32.self_attn.o_proj.weight": "model-00010-of-00012.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00010-of-00012.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00010-of-00012.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00011-of-00012.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
310
+ "model.layers.33.post_norm1.weight": "model-00011-of-00012.safetensors",
311
+ "model.layers.33.post_norm2.weight": "model-00011-of-00012.safetensors",
312
+ "model.layers.33.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
313
+ "model.layers.33.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00011-of-00012.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
321
+ "model.layers.34.post_norm1.weight": "model-00011-of-00012.safetensors",
322
+ "model.layers.34.post_norm2.weight": "model-00011-of-00012.safetensors",
323
+ "model.layers.34.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
324
+ "model.layers.34.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00011-of-00012.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00011-of-00012.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00011-of-00012.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00011-of-00012.safetensors",
332
+ "model.layers.35.post_norm1.weight": "model-00011-of-00012.safetensors",
333
+ "model.layers.35.post_norm2.weight": "model-00011-of-00012.safetensors",
334
+ "model.layers.35.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
335
+ "model.layers.35.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00012-of-00012.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00011-of-00012.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
343
+ "model.layers.36.post_norm1.weight": "model-00012-of-00012.safetensors",
344
+ "model.layers.36.post_norm2.weight": "model-00012-of-00012.safetensors",
345
+ "model.layers.36.self_attn.k_proj.weight": "model-00011-of-00012.safetensors",
346
+ "model.layers.36.self_attn.o_proj.weight": "model-00011-of-00012.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00011-of-00012.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00011-of-00012.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00012-of-00012.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00012-of-00012.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00012-of-00012.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00012-of-00012.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00012-of-00012.safetensors",
354
+ "model.layers.37.post_norm1.weight": "model-00012-of-00012.safetensors",
355
+ "model.layers.37.post_norm2.weight": "model-00012-of-00012.safetensors",
356
+ "model.layers.37.self_attn.k_proj.weight": "model-00012-of-00012.safetensors",
357
+ "model.layers.37.self_attn.o_proj.weight": "model-00012-of-00012.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00012-of-00012.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00012-of-00012.safetensors",
360
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00012.safetensors",
361
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00012.safetensors",
362
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00012.safetensors",
363
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00012.safetensors",
364
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00012.safetensors",
365
+ "model.layers.4.post_norm1.weight": "model-00002-of-00012.safetensors",
366
+ "model.layers.4.post_norm2.weight": "model-00002-of-00012.safetensors",
367
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00012.safetensors",
368
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00012.safetensors",
369
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00012.safetensors",
370
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00012.safetensors",
371
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00012.safetensors",
372
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
373
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
374
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
375
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
376
+ "model.layers.5.post_norm1.weight": "model-00003-of-00012.safetensors",
377
+ "model.layers.5.post_norm2.weight": "model-00003-of-00012.safetensors",
378
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
379
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
380
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
381
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
382
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00012.safetensors",
383
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
384
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
385
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
386
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
387
+ "model.layers.6.post_norm1.weight": "model-00003-of-00012.safetensors",
388
+ "model.layers.6.post_norm2.weight": "model-00003-of-00012.safetensors",
389
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
390
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
391
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
392
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
393
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00012.safetensors",
394
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00012.safetensors",
395
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
396
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00012.safetensors",
397
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00012.safetensors",
398
+ "model.layers.7.post_norm1.weight": "model-00003-of-00012.safetensors",
399
+ "model.layers.7.post_norm2.weight": "model-00003-of-00012.safetensors",
400
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
401
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
402
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
403
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
404
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00012.safetensors",
405
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
406
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00012.safetensors",
407
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
408
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
409
+ "model.layers.8.post_norm1.weight": "model-00004-of-00012.safetensors",
410
+ "model.layers.8.post_norm2.weight": "model-00004-of-00012.safetensors",
411
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00012.safetensors",
412
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00012.safetensors",
413
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00012.safetensors",
414
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00012.safetensors",
415
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00012.safetensors",
416
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00012.safetensors",
417
+ "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00012.safetensors",
418
+ "model.layers.9.mlp.up_proj.weight": "model-00004-of-00012.safetensors",
419
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00012.safetensors",
420
+ "model.layers.9.post_norm1.weight": "model-00004-of-00012.safetensors",
421
+ "model.layers.9.post_norm2.weight": "model-00004-of-00012.safetensors",
422
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00012.safetensors",
423
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00012.safetensors",
424
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00012.safetensors",
425
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00012.safetensors",
426
+ "model.norm.weight": "model-00012-of-00012.safetensors"
427
+ }
428
+ }