File size: 1,773 Bytes
8b49cec
 
 
 
f421d50
8b49cec
 
f421d50
 
8b49cec
 
f421d50
8b49cec
 
 
 
 
 
 
 
 
 
 
 
 
 
f421d50
 
8b49cec
 
 
 
 
 
 
 
f421d50
 
8b49cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f421d50
 
 
8b49cec
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model:
- timm/ViT-SO400M-14-SigLIP
pipeline_tag: zero-shot-image-classification
tags:
- causal
- clip
- siglip
---

Model card for `sii-research/CausalRobot-400M` (based on SigLIP)

Model Details

- Model Type: Contrastive Image-Text, Zero-Shot Image Classification.




## Usage

```shell
pip install open_clip_torch
```

Download the model from [sii-research/CausalRobot-400M](https://huggingface.co/sii-research/CausalRobot-400M)

```python
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8

model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP')
checkpoint = torch.load(ckpt_path, map_location="cpu")
msg = clip_model.load_state_dict("/path/to/pytorch_model.bin", strict=False)
tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP')

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)

    text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)

zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)



```