--- license: apache-2.0 base_model: - timm/ViT-SO400M-14-SigLIP pipeline_tag: zero-shot-image-classification tags: - causal - clip - siglip --- Model card for `sii-research/CausalRobot-400M` (based on SigLIP) Model Details - Model Type: Contrastive Image-Text, Zero-Shot Image Classification. ## Usage ```shell pip install open_clip_torch ``` Download the model from [sii-research/CausalRobot-400M](https://huggingface.co/sii-research/CausalRobot-400M) ```python import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8 model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-14-SigLIP') checkpoint = torch.load(ckpt_path, map_location="cpu") msg = clip_model.load_state_dict("/path/to/pytorch_model.bin", strict=False) tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP') image = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) labels_list = ["a dog", "a cat", "a donut", "a beignet"] text = tokenizer(labels_list, context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) print("Label probabilities: ", zipped_list) ```