Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,63 +1,96 @@
|
|
1 |
-
---
|
2 |
-
base_model: jbochi/madlad400-3b-mt
|
3 |
-
library_name: peft
|
4 |
-
license: apache-2.0
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
-
model-index:
|
8 |
-
- name: madlad400-finetuned-mbk-tpi
|
9 |
-
results: []
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
##
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
-
|
40 |
-
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
-
|
61 |
-
|
62 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
base_model: jbochi/madlad400-3b-mt
|
3 |
+
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: madlad400-finetuned-mbk-tpi
|
9 |
+
results: []
|
10 |
+
language:
|
11 |
+
- mbk
|
12 |
+
- tpi
|
13 |
+
model_type: Translation
|
14 |
+
pipeline_tag: translation
|
15 |
+
---
|
16 |
+
|
17 |
+
# madlad400-finetuned-mbk-tpi
|
18 |
+
|
19 |
+
This model is a fine-tuned version of `jbochi/madlad400-3b-mt` for translation from Malol to Tok Pisin.
|
20 |
+
|
21 |
+
## Model details
|
22 |
+
|
23 |
+
- **Developed by:** SIL Global
|
24 |
+
- **Finetuned from model:** jbochi/madlad400-3b-mt
|
25 |
+
- **Model type:** Translation
|
26 |
+
- **Source language:** Malol (`mbk`)
|
27 |
+
- **Target language:** Tok Pisin (`tpi`)
|
28 |
+
- **License:** closed/private
|
29 |
+
|
30 |
+
## Datasets
|
31 |
+
|
32 |
+
The model was trained on a parallel corpus of plain text files:
|
33 |
+
|
34 |
+
Malol:
|
35 |
+
- Malol Scriptures
|
36 |
+
- License: All rights reserved, Wycliffe Bible Translators. Used with permission.
|
37 |
+
|
38 |
+
Tok Pisin:
|
39 |
+
- Tok Pisin back-translation
|
40 |
+
- License: All rights reserved, Wycliffe Bible Translators. Used with permission.
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
You can use this model with the `transformers` library like this:
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("sil-ai/madlad400-finetuned-mbk-tpi")
|
50 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("sil-ai/madlad400-finetuned-mbk-tpi")
|
51 |
+
|
52 |
+
inputs = tokenizer("Your input text here", return_tensors="pt")
|
53 |
+
outputs = model.generate(**inputs)
|
54 |
+
print(tokenizer.decode(outputs[0]))
|
55 |
+
```
|
56 |
+
|
57 |
+
|
58 |
+
# madlad400-finetuned-mbk-tpi
|
59 |
+
|
60 |
+
This model is a fine-tuned version of [jbochi/madlad400-3b-mt](https://huggingface.co/jbochi/madlad400-3b-mt) on the None dataset.
|
61 |
+
It achieves the following results on the evaluation set:
|
62 |
+
- Loss: 0.1783
|
63 |
+
- Chrf: 79.0009
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
## Training procedure
|
68 |
+
|
69 |
+
### Training hyperparameters
|
70 |
+
|
71 |
+
The following hyperparameters were used during training:
|
72 |
+
- learning_rate: 0.0005
|
73 |
+
- train_batch_size: 4
|
74 |
+
- eval_batch_size: 32
|
75 |
+
- seed: 42
|
76 |
+
- gradient_accumulation_steps: 8
|
77 |
+
- total_train_batch_size: 32
|
78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
+
- lr_scheduler_type: linear
|
80 |
+
- lr_scheduler_warmup_ratio: 0.1
|
81 |
+
- num_epochs: 10.0
|
82 |
+
|
83 |
+
### Training results
|
84 |
+
|
85 |
+
| Training Loss | Epoch | Step | Validation Loss | Chrf |
|
86 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
87 |
+
| 0.2957 | 7.7108 | 1600 | 0.2136 | 76.6433 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- PEFT 0.12.0
|
93 |
+
- Transformers 4.44.2
|
94 |
+
- Pytorch 2.4.1+cu124
|
95 |
+
- Datasets 2.21.0
|
96 |
- Tokenizers 0.19.1
|