Simon Clematide
commited on
Commit
·
d8a7362
1
Parent(s):
9d36a4d
Revise README.md to enhance model documentation and usage instructions
Browse files
README.md
CHANGED
@@ -1,199 +1,128 @@
|
|
1 |
-
|
2 |
-
library_name: transformers
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
|
90 |
-
[
|
91 |
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
|
|
|
1 |
+
# SDG SciBERT Classifier (`sdg-scibert-zo_up`)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This repository contains a fine-tuned version of [allenai/scibert_scivocab_cased](https://huggingface.co/allenai/scibert_scivocab_cased) for classifying scientific text into Sustainable Development Goal (SDG) categories.
|
4 |
|
5 |
+
- Fine-tuned using the 🤗 `transformers` Trainer API
|
6 |
+
- Uses standard `AutoModelForSequenceClassification`
|
7 |
+
- Published with full label mappings, inference scripts, and CLI tool
|
8 |
|
9 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
## 🧪 Quick Inference (Python)
|
12 |
|
13 |
+
You can use the model directly with the Hugging Face `pipeline`:
|
14 |
|
15 |
+
```python
|
16 |
+
from transformers import pipeline
|
17 |
|
18 |
+
classifier = pipeline(
|
19 |
+
"text-classification",
|
20 |
+
model="simon-clmtd/sdg-scibert-zo_up",
|
21 |
+
tokenizer="simon-clmtd/sdg-scibert-zo_up",
|
22 |
+
truncation=True,
|
23 |
+
padding=True,
|
24 |
+
max_length=512,
|
25 |
+
return_all_scores=True,
|
26 |
+
device=0 # or -1 for CPU
|
27 |
+
)
|
28 |
|
29 |
+
text = "Ensure access to affordable, reliable, sustainable and modern energy for all"
|
30 |
+
print(classifier(text))
|
31 |
+
```
|
32 |
|
33 |
+
---
|
34 |
|
35 |
+
## 🖥️ CLI Tool: `sdg-predict`
|
36 |
+
|
37 |
+
### 🔧 Installation (local)
|
38 |
+
|
39 |
+
Clone the repo and install as a Python package:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
git clone https://huggingface.co/simon-clmtd/sdg-scibert-zo_up
|
43 |
+
cd sdg-scibert-zo_up
|
44 |
+
pip install -e .
|
45 |
+
```
|
46 |
+
|
47 |
+
This will install a command-line tool called `sdg-predict`.
|
48 |
+
|
49 |
+
### 📥 Input format
|
50 |
+
|
51 |
+
The CLI tool accepts a `.jsonl` file (one JSON object per line). You must specify the key containing the text to classify:
|
52 |
+
|
53 |
+
Example input file (`input.jsonl`):
|
54 |
+
```json
|
55 |
+
{"id": 1, "text": "Ensure access to affordable, reliable, sustainable and modern energy for all"}
|
56 |
+
{"id": 2, "text": "Atmospheric warming is profoundly affecting high-mountain regions"}
|
57 |
+
```
|
58 |
+
|
59 |
+
### ▶️ Example usage
|
60 |
+
|
61 |
+
#### Top-1 prediction:
|
62 |
+
```bash
|
63 |
+
sdg-predict input.jsonl --key text --top1 --output preds.jsonl
|
64 |
+
```
|
65 |
+
|
66 |
+
#### Full label distribution:
|
67 |
+
```bash
|
68 |
+
sdg-predict input.jsonl --key text --output preds_all.jsonl
|
69 |
+
```
|
70 |
+
|
71 |
+
#### Custom batch size:
|
72 |
+
```bash
|
73 |
+
sdg-predict input.jsonl --key text --batch_size 16
|
74 |
+
```
|
75 |
+
|
76 |
+
### 📤 Output format
|
77 |
+
|
78 |
+
Each output line is the original input with an added `prediction` key:
|
79 |
+
|
80 |
+
**With `--top1`:**
|
81 |
+
```json
|
82 |
+
{
|
83 |
+
"id": 1,
|
84 |
+
"text": "...",
|
85 |
+
"prediction": {
|
86 |
+
"label": "7",
|
87 |
+
"score": 0.9124
|
88 |
+
}
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Without `--top1`:**
|
93 |
+
```json
|
94 |
+
{
|
95 |
+
"id": 1,
|
96 |
+
"text": "...",
|
97 |
+
"prediction": [
|
98 |
+
{"label": "1", "score": 0.0021},
|
99 |
+
{"label": "2", "score": 0.0005},
|
100 |
+
...
|
101 |
+
{"label": "7", "score": 0.9124}
|
102 |
+
]
|
103 |
+
}
|
104 |
+
```
|
105 |
|
106 |
+
---
|
107 |
|
108 |
+
## 📦 Repository Contents
|
109 |
|
110 |
+
- `modeling.py`: Optional class wrapper if extending the base model.
|
111 |
+
- `inference.py`: Reusable batch inference logic for Python scripts.
|
112 |
+
- `cli_predict.py`: CLI tool using the inference logic.
|
113 |
+
- `requirements.txt`: Runtime dependencies.
|
114 |
+
- `setup.py`: Installation and entry point for the CLI.
|
115 |
|
116 |
+
---
|
117 |
|
118 |
+
## 🔍 Citation
|
119 |
|
120 |
+
Please cite the original [SciBERT paper](https://arxiv.org/abs/1903.10676) if using this model, and attribute this fine-tuning setup if relevant.
|
121 |
|
122 |
+
---
|
123 |
|
124 |
+
## 👤 Author
|
125 |
|
126 |
+
Simon Clematide
|
127 |
+
Computational Linguistics, UZH
|
128 |
+
[simon-clematide.net](https://simon-clematide.net) (if applicable)
|