Simon Clematide
commited on
Commit
·
fa342d2
1
Parent(s):
4d23e7a
Add CLI script for processing JSONL files and generating binary predictions with optional Excel output
Browse files
sdg_predict/cli_conversion.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
import logging
|
5 |
+
|
6 |
+
|
7 |
+
def binary_from_softmax(prediction, cap_class0=0.5):
|
8 |
+
"""
|
9 |
+
Given a softmax-style prediction list, computes binary scores
|
10 |
+
for all non-class-0 labels, contrasted against (possibly capped) class-0 score.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
prediction: list of {"label": str, "score": float}
|
14 |
+
cap_class0: float, maximum score allowed for label "0"
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
dict of {label: binary_score}
|
18 |
+
"""
|
19 |
+
score_0 = next((x["score"] for x in prediction if x["label"] == "0"), 0.0)
|
20 |
+
score_0 = min(score_0, cap_class0)
|
21 |
+
|
22 |
+
binary_predictions = {}
|
23 |
+
for entry in prediction:
|
24 |
+
label = entry["label"]
|
25 |
+
if label == "0":
|
26 |
+
continue
|
27 |
+
score = entry["score"]
|
28 |
+
binary_score = score / (score + score_0) if (score + score_0) > 0 else 0.0
|
29 |
+
binary_predictions[label] = round(binary_score, 3)
|
30 |
+
|
31 |
+
return binary_predictions
|
32 |
+
|
33 |
+
|
34 |
+
def process_jsonl(input_file, output_file, cap_class0, excel_file=None):
|
35 |
+
transformed_data = []
|
36 |
+
with open(input_file, "r") as infile, open(output_file, "w") as outfile:
|
37 |
+
for line in infile:
|
38 |
+
entry = json.loads(line)
|
39 |
+
prediction = entry.get("prediction", [])
|
40 |
+
entry["binary_predictions"] = binary_from_softmax(prediction, cap_class0)
|
41 |
+
outfile.write(json.dumps(entry, ensure_ascii=False) + "\n")
|
42 |
+
|
43 |
+
# Prepare data for Excel output
|
44 |
+
transformed_row = {
|
45 |
+
"publication_zora_id": entry.get("id"),
|
46 |
+
**{
|
47 |
+
f"dvdblk_sdg{sdg}": entry["binary_predictions"].get(str(sdg), 0)
|
48 |
+
for sdg in range(1, 18)
|
49 |
+
},
|
50 |
+
}
|
51 |
+
transformed_data.append(transformed_row)
|
52 |
+
|
53 |
+
if excel_file:
|
54 |
+
if not excel_file.endswith(".xlsx"):
|
55 |
+
raise ValueError("Excel file must have the .xlsx extension")
|
56 |
+
logging.info("Writing Excel output to %s", excel_file)
|
57 |
+
df_transformed = pd.DataFrame(transformed_data)
|
58 |
+
df_transformed.to_excel(excel_file, index=False)
|
59 |
+
logging.info("Excel output written to %s", excel_file)
|
60 |
+
|
61 |
+
|
62 |
+
def main():
|
63 |
+
parser = argparse.ArgumentParser(
|
64 |
+
description="Process JSONL file and compute binary predictions."
|
65 |
+
)
|
66 |
+
parser.add_argument("input_file", type=str, help="Path to the input JSONL file.")
|
67 |
+
parser.add_argument("output_file", type=str, help="Path to the output JSONL file.")
|
68 |
+
parser.add_argument(
|
69 |
+
"--cap_class0",
|
70 |
+
type=float,
|
71 |
+
default=0.5,
|
72 |
+
help="Maximum score allowed for class 0.",
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--excel",
|
76 |
+
type=str,
|
77 |
+
help="Path to the Excel file for binary predictions (optional).",
|
78 |
+
)
|
79 |
+
|
80 |
+
args = parser.parse_args()
|
81 |
+
|
82 |
+
process_jsonl(args.input_file, args.output_file, args.cap_class0, args.excel)
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
main()
|