Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 202.99 +/- 51.22
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ce108ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ce108aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ce108af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ce1092050>", "_build": "<function ActorCriticPolicy._build at 0x7f0ce10920e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ce1092170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ce1092200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ce1092290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ce1092320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ce10923b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ce1092440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ce10da8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652881731.1166975, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHA2qz7XS2U6vPsLPN8Rj7gPVu473cNNuQAAgD8AAIA/gAgFPa7Xh7o203o7aY2TNkxaILvy/Is1AACAPwAAgD+aybM9rnGlutNR0rsKXz408P5pujXWu7MAAIA/AAAAAENdxb5Xfua9Op9RvhkiDr1OKrc+ZubavQAAgD8AAAAAje24vZ+EUz8UrUe8NfGhvggPWTx1GHQ9AAAAAAAAAAAQefA+z6kTvmrkdD3UKzC8Zm+YvO68QD0AAIA/AACAPzA5sT6ziDI/+Pl9vS7chL53pso9/m27vQAAAAAAAAAArUIdvnuugrp1c346eZhOtpkdvbo0tpG5AACAPwAAgD+qYMk+ITBFva/3Lrtc9zs5Kju5vbJwbzoAAIA/AACAP7Wg2r6R+EW9epQRvHXjD7r243Y9eIsVuwAAgD8AAIA/ze+xPfYkabp3UEg69nQAtpyLkDoLrXS5AACAPwAAgD8gIBI+Unb7Ot6jhbw9AyC6L4bKPDiKJLsAAIA/AACAP5qxWbyPtgu64cSsOm8saDY45127NgXKuQAAgD8AAIA/zTRtPfY0R7r4Kz87EQ4ntdYhVTvmtly6AACAPwAAgD/N3JC7aNylP9YW7jr6cZ6+lf8GPFOs5bwAAAAAAAAAAAbfJL7szX8/ZTrmPMDmuL60A0u+V4IAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7uvAOSPKFMCUhpRSlIwBbJRLuYwBdJRHQIS2m7voePt1fZQoaAZoCWgPQwjvjozV5lcnwJSGlFKUaBVL2WgWR0CEvnfJmukldX2UKGgGaAloD0MIbO19qgo/UkCUhpRSlGgVTegDaBZHQITACRKYiPh1fZQoaAZoCWgPQwjPa+wS1YsZwJSGlFKUaBVLqWgWR0CEynnq3VkMdX2UKGgGaAloD0MI+z+H+fIzWMCUhpRSlGgVTR4BaBZHQITS1BMSK3x1fZQoaAZoCWgPQwiv7e2W5P9aQJSGlFKUaBVN6ANoFkdAhNN6PKdQPHV9lChoBmgJaA9DCGBY/nxbTE1AlIaUUpRoFU3oA2gWR0CE1z029+PSdX2UKGgGaAloD0MItBzoobb1PsCUhpRSlGgVS7doFkdAhNd/pdKNAHV9lChoBmgJaA9DCE/ltKfkbWBAlIaUUpRoFU3oA2gWR0CE3kiRnvlVdX2UKGgGaAloD0MIscQDyqaBY0CUhpRSlGgVTegDaBZHQITgAW1twaR1fZQoaAZoCWgPQwiiemtgq/RWQJSGlFKUaBVN6ANoFkdAhOhfCZWq+HV9lChoBmgJaA9DCHTqymd5yFpAlIaUUpRoFU3oA2gWR0CFFRZgXuVpdX2UKGgGaAloD0MIyD8ziA/sqD+UhpRSlGgVS6JoFkdAhRm4WUKRdXV9lChoBmgJaA9DCCuFQC5xQltAlIaUUpRoFU3oA2gWR0CFGlWpZOi4dX2UKGgGaAloD0MID2PS30uoXECUhpRSlGgVTegDaBZHQIUbczVMEid1fZQoaAZoCWgPQwgZWMfxQ3VZQJSGlFKUaBVN6ANoFkdAhSXyCFsYVXV9lChoBmgJaA9DCL3CgvsBmF5AlIaUUpRoFU3oA2gWR0CFKZVSXMQmdX2UKGgGaAloD0MI5h4Svvf0XUCUhpRSlGgVTegDaBZHQIVEgBcRlH11fZQoaAZoCWgPQwi9/E6TGV8ewJSGlFKUaBVLzWgWR0CFRPg88s+WdX2UKGgGaAloD0MI9dkB1xXBT0CUhpRSlGgVTegDaBZHQIVfqRwIdEN1fZQoaAZoCWgPQwjV7ewrD8FfQJSGlFKUaBVN6ANoFkdAhWmr6LwWnHV9lChoBmgJaA9DCOFDiZY8vkZAlIaUUpRoFU3oA2gWR0CFeXh86V+rdX2UKGgGaAloD0MIKPT6k/gmVUCUhpRSlGgVTegDaBZHQIWDfBUJfIF1fZQoaAZoCWgPQwgjwOldvKheQJSGlFKUaBVN6ANoFkdAhYQ7zK9wm3V9lChoBmgJaA9DCJYi+UogiTnAlIaUUpRoFUu8aBZHQIWHrposZpB1fZQoaAZoCWgPQwjEJced0oFdQJSGlFKUaBVN6ANoFkdAhYhqqn3tbHV9lChoBmgJaA9DCADHnj2Xe11AlIaUUpRoFU3oA2gWR0CFiLAood+5dX2UKGgGaAloD0MIasL2kzEyXECUhpRSlGgVTegDaBZHQIWPGmaYu011fZQoaAZoCWgPQwgoRMAhVAlLQJSGlFKUaBVN6ANoFkdAhZfn2ZiNKnV9lChoBmgJaA9DCJMehlYnB1RAlIaUUpRoFU3oA2gWR0CFnYb3oLXudX2UKGgGaAloD0MI4GdcOBAKXkCUhpRSlGgVTegDaBZHQIXHWeUY8+11fZQoaAZoCWgPQwjIXYQpyn1fQJSGlFKUaBVN6ANoFkdAhcfil7+kxnV9lChoBmgJaA9DCJqYLsTq5F5AlIaUUpRoFU3oA2gWR0CFyNQ9ic5KdX2UKGgGaAloD0MIaW6FsBqjMsCUhpRSlGgVS+toFkdAhczQFkhA4XV9lChoBmgJaA9DCNHrT+JzWFJAlIaUUpRoFU3oA2gWR0CF0WGB4D9wdX2UKGgGaAloD0MID37iAPrNOsCUhpRSlGgVS/hoFkdAheIJo9LYgHV9lChoBmgJaA9DCAk3GVWG9TJAlIaUUpRoFU3oA2gWR0CF6+ht+CsfdX2UKGgGaAloD0MI2c9iKRJAYUCUhpRSlGgVTegDaBZHQIXsVQXQ+ll1fZQoaAZoCWgPQwhortNISx1eQJSGlFKUaBVN6ANoFkdAhgRpFCswL3V9lChoBmgJaA9DCFsKSPsf4EBAlIaUUpRoFU3oA2gWR0CGHb95Qgs9dX2UKGgGaAloD0MIUrgeheu4VUCUhpRSlGgVTegDaBZHQIYoMOG0u151fZQoaAZoCWgPQwiRKR+CqndRQJSGlFKUaBVN6ANoFkdAhij5N47ihnV9lChoBmgJaA9DCHLBGfz9+l9AlIaUUpRoFU3oA2gWR0CGLKjASFoMdX2UKGgGaAloD0MIC2Kga9/SYkCUhpRSlGgVTegDaBZHQIYtYWnCO3l1fZQoaAZoCWgPQwh7aYoApzNQQJSGlFKUaBVN6ANoFkdAhi2kDyOJcnV9lChoBmgJaA9DCG7eOCnMnVNAlIaUUpRoFU3oA2gWR0CGP6mois4ldX2UKGgGaAloD0MIiPTb14H0X0CUhpRSlGgVTegDaBZHQIZI+jCYTkB1fZQoaAZoCWgPQwjVkSOdgSdYQJSGlFKUaBVN6ANoFkdAhlOCHqNZNnV9lChoBmgJaA9DCKnZA63AtV9AlIaUUpRoFU3oA2gWR0CGVC/2TPjXdX2UKGgGaAloD0MInBTmPc6cK0CUhpRSlGgVS/1oFkdAhnu+AVfu1HV9lChoBmgJaA9DCKqCUUmd2VFAlIaUUpRoFU3oA2gWR0CGgHGMGX5WdX2UKGgGaAloD0MIzzEge73LNsCUhpRSlGgVTS8BaBZHQIaBIGIKtxN1fZQoaAZoCWgPQwic/YFy2/leQJSGlFKUaBVN6ANoFkdAhoWIlD4QBnV9lChoBmgJaA9DCKnYmNcRyzVAlIaUUpRoFUudaBZHQIaSZEWqLjx1fZQoaAZoCWgPQwhn1HyVfDlSQJSGlFKUaBVN6ANoFkdAhpeQJgLJCHV9lChoBmgJaA9DCJoK8Ui8R11AlIaUUpRoFU3oA2gWR0CGoYpjMFEBdX2UKGgGaAloD0MI8PlhhPDEV0CUhpRSlGgVTegDaBZHQIah8L8aXKN1fZQoaAZoCWgPQwj+mNamscVWQJSGlFKUaBVN6ANoFkdAhrk+t8uzyHV9lChoBmgJaA9DCEc6AyOvm2BAlIaUUpRoFU3oA2gWR0CG0ac0+C9RdX2UKGgGaAloD0MIlba4xmf9WUCUhpRSlGgVTegDaBZHQIbbpVOsT391fZQoaAZoCWgPQwh+ObNdoXxXQJSGlFKUaBVN6ANoFkdAhtxjvd/KAHV9lChoBmgJaA9DCK0yU1p/rU5AlIaUUpRoFU3oA2gWR0CG4PAP/aQFdX2UKGgGaAloD0MIP1JEhlVwWkCUhpRSlGgVTegDaBZHQIb1SWRigCh1fZQoaAZoCWgPQwhw0F59PGJNQJSGlFKUaBVN6ANoFkdAhvzlhw2l23V9lChoBmgJaA9DCDXTvU7qT1ZAlIaUUpRoFU3oA2gWR0CHAnxXnyNGdX2UKGgGaAloD0MI7rCJzFyKXUCUhpRSlGgVTegDaBZHQIcDNUVBUrF1fZQoaAZoCWgPQwhiEi7kETheQJSGlFKUaBVN6ANoFkdAhwUBOHnEEXV9lChoBmgJaA9DCJqxaDo7FUBAlIaUUpRoFU3oA2gWR0CHMYGB4D9wdX2UKGgGaAloD0MIXyUfuwvxWkCUhpRSlGgVTegDaBZHQIc3ArWiDdx1fZQoaAZoCWgPQwg9nStKCSk3QJSGlFKUaBVNKgFoFkdAh0ImCqZMMHV9lChoBmgJaA9DCEmAmlq2GlhAlIaUUpRoFU3oA2gWR0CHRAiHqNZNdX2UKGgGaAloD0MI2O+Jdao/WECUhpRSlGgVTegDaBZHQIdI0tGus911fZQoaAZoCWgPQwgv3Lkw0tJRQJSGlFKUaBVN6ANoFkdAh1IDdgv12HV9lChoBmgJaA9DCJnwS/28aFVAlIaUUpRoFU3oA2gWR0CHUl2L5ylvdX2UKGgGaAloD0MIR+f8FMcZRUCUhpRSlGgVTegDaBZHQIdoniLl3hZ1fZQoaAZoCWgPQwhpO6buysxaQJSGlFKUaBVN6ANoFkdAh4FSCWeHz3V9lChoBmgJaA9DCB7htOBFdlxAlIaUUpRoFU3oA2gWR0CHi2CCBf8edX2UKGgGaAloD0MIFy1A22qCX0CUhpRSlGgVTegDaBZHQIeMJRwZOzp1fZQoaAZoCWgPQwhxkBDlC75IQJSGlFKUaBVN6ANoFkdAh5DXbEgnt3V9lChoBmgJaA9DCDUJ3pDGWmBAlIaUUpRoFU3oA2gWR0CHrSkfs/pudX2UKGgGaAloD0MIY9F0djJQNECUhpRSlGgVTegDaBZHQIey8CDEm6Z1fZQoaAZoCWgPQwgiUtMupr5dQJSGlFKUaBVN6ANoFkdAh7O2aUiY9nV9lChoBmgJaA9DCP0VMlcGC0VAlIaUUpRoFU3oA2gWR0CHtc/fwZwXdX2UKGgGaAloD0MICW6kbJFNWkCUhpRSlGgVTegDaBZHQIfhPnQpnYh1fZQoaAZoCWgPQwjHL7yS5IBbQJSGlFKUaBVN6ANoFkdAh+dUBnzxw3V9lChoBmgJaA9DCNyBOuXRbldAlIaUUpRoFU3oA2gWR0CH82bKifxudX2UKGgGaAloD0MI8kI6PITZJcCUhpRSlGgVTegDaBZHQIf1dKujh1l1fZQoaAZoCWgPQwijW6/pQd9cQJSGlFKUaBVN6ANoFkdAh/paF23az3V9lChoBmgJaA9DCEcDeAskfkrAlIaUUpRoFU0bAWgWR0CH/2AzYVZcdX2UKGgGaAloD0MIgehJmdQXVkCUhpRSlGgVTegDaBZHQIgD1TNt65Z1fZQoaAZoCWgPQwiJCtXNReJiQJSGlFKUaBVN6ANoFkdAiAQ+CsfaH3V9lChoBmgJaA9DCMQGCydpqmpAlIaUUpRoFU3VAmgWR0CICn8/lhgFdX2UKGgGaAloD0MIngYMkj4gW0CUhpRSlGgVTegDaBZHQIgYkqYqoZR1fZQoaAZoCWgPQwh24QfnU7VgQJSGlFKUaBVN6ANoFkdAiDirJSzgM3V9lChoBmgJaA9DCCWS6GUUEl1AlIaUUpRoFU3oA2gWR0CIOXOHFglXdX2UKGgGaAloD0MIqKePwB/7X0CUhpRSlGgVTegDaBZHQIg+LAi3XqZ1fZQoaAZoCWgPQwinyYy3FexiQJSGlFKUaBVN6ANoFkdAiFtmQr+YMXV9lChoBmgJaA9DCPiJA+j3c0ZAlIaUUpRoFU3oA2gWR0CIYUDoQnQZdX2UKGgGaAloD0MI4zREFf5kWECUhpRSlGgVTegDaBZHQIhiCosI3R51fZQoaAZoCWgPQwin5nKDoQBaQJSGlFKUaBVN6ANoFkdAiGlXOW0JGHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f42b1bd18e0d15a3bfe84ea7e420bd5d1cd92103a7b036952c5688ed70104dd
|
3 |
+
size 144036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ce108ae60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ce108aef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ce108af80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ce1092050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0ce10920e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0ce1092170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ce1092200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0ce1092290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ce1092320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ce10923b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ce1092440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0ce10da8d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652881731.1166975,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHA2qz7XS2U6vPsLPN8Rj7gPVu473cNNuQAAgD8AAIA/gAgFPa7Xh7o203o7aY2TNkxaILvy/Is1AACAPwAAgD+aybM9rnGlutNR0rsKXz408P5pujXWu7MAAIA/AAAAAENdxb5Xfua9Op9RvhkiDr1OKrc+ZubavQAAgD8AAAAAje24vZ+EUz8UrUe8NfGhvggPWTx1GHQ9AAAAAAAAAAAQefA+z6kTvmrkdD3UKzC8Zm+YvO68QD0AAIA/AACAPzA5sT6ziDI/+Pl9vS7chL53pso9/m27vQAAAAAAAAAArUIdvnuugrp1c346eZhOtpkdvbo0tpG5AACAPwAAgD+qYMk+ITBFva/3Lrtc9zs5Kju5vbJwbzoAAIA/AACAP7Wg2r6R+EW9epQRvHXjD7r243Y9eIsVuwAAgD8AAIA/ze+xPfYkabp3UEg69nQAtpyLkDoLrXS5AACAPwAAgD8gIBI+Unb7Ot6jhbw9AyC6L4bKPDiKJLsAAIA/AACAP5qxWbyPtgu64cSsOm8saDY45127NgXKuQAAgD8AAIA/zTRtPfY0R7r4Kz87EQ4ntdYhVTvmtly6AACAPwAAgD/N3JC7aNylP9YW7jr6cZ6+lf8GPFOs5bwAAAAAAAAAAAbfJL7szX8/ZTrmPMDmuL60A0u+V4IAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7uvAOSPKFMCUhpRSlIwBbJRLuYwBdJRHQIS2m7voePt1fZQoaAZoCWgPQwjvjozV5lcnwJSGlFKUaBVL2WgWR0CEvnfJmukldX2UKGgGaAloD0MIbO19qgo/UkCUhpRSlGgVTegDaBZHQITACRKYiPh1fZQoaAZoCWgPQwjPa+wS1YsZwJSGlFKUaBVLqWgWR0CEynnq3VkMdX2UKGgGaAloD0MI+z+H+fIzWMCUhpRSlGgVTR4BaBZHQITS1BMSK3x1fZQoaAZoCWgPQwiv7e2W5P9aQJSGlFKUaBVN6ANoFkdAhNN6PKdQPHV9lChoBmgJaA9DCGBY/nxbTE1AlIaUUpRoFU3oA2gWR0CE1z029+PSdX2UKGgGaAloD0MItBzoobb1PsCUhpRSlGgVS7doFkdAhNd/pdKNAHV9lChoBmgJaA9DCE/ltKfkbWBAlIaUUpRoFU3oA2gWR0CE3kiRnvlVdX2UKGgGaAloD0MIscQDyqaBY0CUhpRSlGgVTegDaBZHQITgAW1twaR1fZQoaAZoCWgPQwiiemtgq/RWQJSGlFKUaBVN6ANoFkdAhOhfCZWq+HV9lChoBmgJaA9DCHTqymd5yFpAlIaUUpRoFU3oA2gWR0CFFRZgXuVpdX2UKGgGaAloD0MIyD8ziA/sqD+UhpRSlGgVS6JoFkdAhRm4WUKRdXV9lChoBmgJaA9DCCuFQC5xQltAlIaUUpRoFU3oA2gWR0CFGlWpZOi4dX2UKGgGaAloD0MID2PS30uoXECUhpRSlGgVTegDaBZHQIUbczVMEid1fZQoaAZoCWgPQwgZWMfxQ3VZQJSGlFKUaBVN6ANoFkdAhSXyCFsYVXV9lChoBmgJaA9DCL3CgvsBmF5AlIaUUpRoFU3oA2gWR0CFKZVSXMQmdX2UKGgGaAloD0MI5h4Svvf0XUCUhpRSlGgVTegDaBZHQIVEgBcRlH11fZQoaAZoCWgPQwi9/E6TGV8ewJSGlFKUaBVLzWgWR0CFRPg88s+WdX2UKGgGaAloD0MI9dkB1xXBT0CUhpRSlGgVTegDaBZHQIVfqRwIdEN1fZQoaAZoCWgPQwjV7ewrD8FfQJSGlFKUaBVN6ANoFkdAhWmr6LwWnHV9lChoBmgJaA9DCOFDiZY8vkZAlIaUUpRoFU3oA2gWR0CFeXh86V+rdX2UKGgGaAloD0MIKPT6k/gmVUCUhpRSlGgVTegDaBZHQIWDfBUJfIF1fZQoaAZoCWgPQwgjwOldvKheQJSGlFKUaBVN6ANoFkdAhYQ7zK9wm3V9lChoBmgJaA9DCJYi+UogiTnAlIaUUpRoFUu8aBZHQIWHrposZpB1fZQoaAZoCWgPQwjEJced0oFdQJSGlFKUaBVN6ANoFkdAhYhqqn3tbHV9lChoBmgJaA9DCADHnj2Xe11AlIaUUpRoFU3oA2gWR0CFiLAood+5dX2UKGgGaAloD0MIasL2kzEyXECUhpRSlGgVTegDaBZHQIWPGmaYu011fZQoaAZoCWgPQwgoRMAhVAlLQJSGlFKUaBVN6ANoFkdAhZfn2ZiNKnV9lChoBmgJaA9DCJMehlYnB1RAlIaUUpRoFU3oA2gWR0CFnYb3oLXudX2UKGgGaAloD0MI4GdcOBAKXkCUhpRSlGgVTegDaBZHQIXHWeUY8+11fZQoaAZoCWgPQwjIXYQpyn1fQJSGlFKUaBVN6ANoFkdAhcfil7+kxnV9lChoBmgJaA9DCJqYLsTq5F5AlIaUUpRoFU3oA2gWR0CFyNQ9ic5KdX2UKGgGaAloD0MIaW6FsBqjMsCUhpRSlGgVS+toFkdAhczQFkhA4XV9lChoBmgJaA9DCNHrT+JzWFJAlIaUUpRoFU3oA2gWR0CF0WGB4D9wdX2UKGgGaAloD0MID37iAPrNOsCUhpRSlGgVS/hoFkdAheIJo9LYgHV9lChoBmgJaA9DCAk3GVWG9TJAlIaUUpRoFU3oA2gWR0CF6+ht+CsfdX2UKGgGaAloD0MI2c9iKRJAYUCUhpRSlGgVTegDaBZHQIXsVQXQ+ll1fZQoaAZoCWgPQwhortNISx1eQJSGlFKUaBVN6ANoFkdAhgRpFCswL3V9lChoBmgJaA9DCFsKSPsf4EBAlIaUUpRoFU3oA2gWR0CGHb95Qgs9dX2UKGgGaAloD0MIUrgeheu4VUCUhpRSlGgVTegDaBZHQIYoMOG0u151fZQoaAZoCWgPQwiRKR+CqndRQJSGlFKUaBVN6ANoFkdAhij5N47ihnV9lChoBmgJaA9DCHLBGfz9+l9AlIaUUpRoFU3oA2gWR0CGLKjASFoMdX2UKGgGaAloD0MIC2Kga9/SYkCUhpRSlGgVTegDaBZHQIYtYWnCO3l1fZQoaAZoCWgPQwh7aYoApzNQQJSGlFKUaBVN6ANoFkdAhi2kDyOJcnV9lChoBmgJaA9DCG7eOCnMnVNAlIaUUpRoFU3oA2gWR0CGP6mois4ldX2UKGgGaAloD0MIiPTb14H0X0CUhpRSlGgVTegDaBZHQIZI+jCYTkB1fZQoaAZoCWgPQwjVkSOdgSdYQJSGlFKUaBVN6ANoFkdAhlOCHqNZNnV9lChoBmgJaA9DCKnZA63AtV9AlIaUUpRoFU3oA2gWR0CGVC/2TPjXdX2UKGgGaAloD0MInBTmPc6cK0CUhpRSlGgVS/1oFkdAhnu+AVfu1HV9lChoBmgJaA9DCKqCUUmd2VFAlIaUUpRoFU3oA2gWR0CGgHGMGX5WdX2UKGgGaAloD0MIzzEge73LNsCUhpRSlGgVTS8BaBZHQIaBIGIKtxN1fZQoaAZoCWgPQwic/YFy2/leQJSGlFKUaBVN6ANoFkdAhoWIlD4QBnV9lChoBmgJaA9DCKnYmNcRyzVAlIaUUpRoFUudaBZHQIaSZEWqLjx1fZQoaAZoCWgPQwhn1HyVfDlSQJSGlFKUaBVN6ANoFkdAhpeQJgLJCHV9lChoBmgJaA9DCJoK8Ui8R11AlIaUUpRoFU3oA2gWR0CGoYpjMFEBdX2UKGgGaAloD0MI8PlhhPDEV0CUhpRSlGgVTegDaBZHQIah8L8aXKN1fZQoaAZoCWgPQwj+mNamscVWQJSGlFKUaBVN6ANoFkdAhrk+t8uzyHV9lChoBmgJaA9DCEc6AyOvm2BAlIaUUpRoFU3oA2gWR0CG0ac0+C9RdX2UKGgGaAloD0MIlba4xmf9WUCUhpRSlGgVTegDaBZHQIbbpVOsT391fZQoaAZoCWgPQwh+ObNdoXxXQJSGlFKUaBVN6ANoFkdAhtxjvd/KAHV9lChoBmgJaA9DCK0yU1p/rU5AlIaUUpRoFU3oA2gWR0CG4PAP/aQFdX2UKGgGaAloD0MIP1JEhlVwWkCUhpRSlGgVTegDaBZHQIb1SWRigCh1fZQoaAZoCWgPQwhw0F59PGJNQJSGlFKUaBVN6ANoFkdAhvzlhw2l23V9lChoBmgJaA9DCDXTvU7qT1ZAlIaUUpRoFU3oA2gWR0CHAnxXnyNGdX2UKGgGaAloD0MI7rCJzFyKXUCUhpRSlGgVTegDaBZHQIcDNUVBUrF1fZQoaAZoCWgPQwhiEi7kETheQJSGlFKUaBVN6ANoFkdAhwUBOHnEEXV9lChoBmgJaA9DCJqxaDo7FUBAlIaUUpRoFU3oA2gWR0CHMYGB4D9wdX2UKGgGaAloD0MIXyUfuwvxWkCUhpRSlGgVTegDaBZHQIc3ArWiDdx1fZQoaAZoCWgPQwg9nStKCSk3QJSGlFKUaBVNKgFoFkdAh0ImCqZMMHV9lChoBmgJaA9DCEmAmlq2GlhAlIaUUpRoFU3oA2gWR0CHRAiHqNZNdX2UKGgGaAloD0MI2O+Jdao/WECUhpRSlGgVTegDaBZHQIdI0tGus911fZQoaAZoCWgPQwgv3Lkw0tJRQJSGlFKUaBVN6ANoFkdAh1IDdgv12HV9lChoBmgJaA9DCJnwS/28aFVAlIaUUpRoFU3oA2gWR0CHUl2L5ylvdX2UKGgGaAloD0MIR+f8FMcZRUCUhpRSlGgVTegDaBZHQIdoniLl3hZ1fZQoaAZoCWgPQwhpO6buysxaQJSGlFKUaBVN6ANoFkdAh4FSCWeHz3V9lChoBmgJaA9DCB7htOBFdlxAlIaUUpRoFU3oA2gWR0CHi2CCBf8edX2UKGgGaAloD0MIFy1A22qCX0CUhpRSlGgVTegDaBZHQIeMJRwZOzp1fZQoaAZoCWgPQwhxkBDlC75IQJSGlFKUaBVN6ANoFkdAh5DXbEgnt3V9lChoBmgJaA9DCDUJ3pDGWmBAlIaUUpRoFU3oA2gWR0CHrSkfs/pudX2UKGgGaAloD0MIY9F0djJQNECUhpRSlGgVTegDaBZHQIey8CDEm6Z1fZQoaAZoCWgPQwgiUtMupr5dQJSGlFKUaBVN6ANoFkdAh7O2aUiY9nV9lChoBmgJaA9DCP0VMlcGC0VAlIaUUpRoFU3oA2gWR0CHtc/fwZwXdX2UKGgGaAloD0MICW6kbJFNWkCUhpRSlGgVTegDaBZHQIfhPnQpnYh1fZQoaAZoCWgPQwjHL7yS5IBbQJSGlFKUaBVN6ANoFkdAh+dUBnzxw3V9lChoBmgJaA9DCNyBOuXRbldAlIaUUpRoFU3oA2gWR0CH82bKifxudX2UKGgGaAloD0MI8kI6PITZJcCUhpRSlGgVTegDaBZHQIf1dKujh1l1fZQoaAZoCWgPQwijW6/pQd9cQJSGlFKUaBVN6ANoFkdAh/paF23az3V9lChoBmgJaA9DCEcDeAskfkrAlIaUUpRoFU0bAWgWR0CH/2AzYVZcdX2UKGgGaAloD0MIgehJmdQXVkCUhpRSlGgVTegDaBZHQIgD1TNt65Z1fZQoaAZoCWgPQwiJCtXNReJiQJSGlFKUaBVN6ANoFkdAiAQ+CsfaH3V9lChoBmgJaA9DCMQGCydpqmpAlIaUUpRoFU3VAmgWR0CICn8/lhgFdX2UKGgGaAloD0MIngYMkj4gW0CUhpRSlGgVTegDaBZHQIgYkqYqoZR1fZQoaAZoCWgPQwh24QfnU7VgQJSGlFKUaBVN6ANoFkdAiDirJSzgM3V9lChoBmgJaA9DCCWS6GUUEl1AlIaUUpRoFU3oA2gWR0CIOXOHFglXdX2UKGgGaAloD0MIqKePwB/7X0CUhpRSlGgVTegDaBZHQIg+LAi3XqZ1fZQoaAZoCWgPQwinyYy3FexiQJSGlFKUaBVN6ANoFkdAiFtmQr+YMXV9lChoBmgJaA9DCPiJA+j3c0ZAlIaUUpRoFU3oA2gWR0CIYUDoQnQZdX2UKGgGaAloD0MI4zREFf5kWECUhpRSlGgVTegDaBZHQIhiCosI3R51fZQoaAZoCWgPQwin5nKDoQBaQJSGlFKUaBVN6ANoFkdAiGlXOW0JGHVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5d0a16a639fe5698a33b3c290cd47f18d7cbb12ef61b657fa128622c1f4144b
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77ff76b360cfaddea81a333869821517f8dfc49588e726d3820ecd1d20e69765
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68b6428f7fb9d9169ae1305c84188da086cccc1b8e293572caf8954c9500dd5a
|
3 |
+
size 255083
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 202.98690551640817, "std_reward": 51.223736805019755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-18T14:04:13.720519"}
|