File size: 27,450 Bytes
17b7c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:1990000
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
datasets:
- sentence-transformers/msmarco
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: CrossEncoder based on answerdotai/ModernBERT-base
  results:
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.6611
      name: Map
    - type: mrr@10
      value: 0.6577
      name: Mrr@10
    - type: ndcg@10
      value: 0.7254
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3144
      name: Map
    - type: mrr@10
      value: 0.5085
      name: Mrr@10
    - type: ndcg@10
      value: 0.3421
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.6828
      name: Map
    - type: mrr@10
      value: 0.7167
      name: Mrr@10
    - type: ndcg@10
      value: 0.7314
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.5527
      name: Map
    - type: mrr@10
      value: 0.6276
      name: Mrr@10
    - type: ndcg@10
      value: 0.5996
      name: Ndcg@10
---

# CrossEncoder based on answerdotai/ModernBERT-base

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 8949b909ec900327062f0ebf497f51aef5e6f0c8 -->
- **Maximum Sequence Length:** 8192 tokens
- **Number of Output Labels:** 1 label
- **Training Dataset:**
    - [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("skfrost19/reranker-ModernBERT-base-msmarco-bce-AdamW.Cosine-ep-1-3")
# Get scores for pairs of texts
pairs = [
    ['what symptoms might a patient with a tmd have', 'TMD sufferers have a long list of symptoms, including chronic pain (https://youtu.be/SvMaJb8o2RI), many of which are in common with Parkinsonâ\x80\x99s disease (PD) symptoms.'],
    ['what is a thermal protector', 'The word hero comes from the Greek á¼¥Ï\x81Ï\x89Ï\x82 (hÄ\x93rÅ\x8ds), hero, warrior, particularly one such as Heracles with divine ancestry or later given divine honors. literally protector or defender.'],
    ['how many copies of call of duty wwii sold', 'Call of Duty 3. Call of Duty 3 is a World War II first-person shooter and the third installment in the Call of Duty video game series. Released on November 7, 2006, the game was developed by Treyarch, and was the first major installment in the Call of Duty series not to be developed by Infinity Ward. It was also the first not to be released on the PC platform. It was released on the PlayStation 2, PlayStation 3, Wii, Xbox, and Xbox 360.'],
    ['what is the desired temperature for the fresh food compartment in a refrigerator', 'A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C (37 to 41 °F).emperature settings for refrigerator and freezer compartments are often given arbitrary numbers by manufacturers (for example, 1 through 9, warmest to coldest), but generally 3 to 5 °C (37 to 41 °F) is ideal for the refrigerator compartment and â\x88\x9218 °C (0 °F) for the freezer.'],
    ['what is gsm alarm system', 'Iâ\x80\x99m sure you would have these questions in your mind when you heard GSM alarm system at the first time. GSM alarm system is an alarm system that operating through GSM (global system for mobile communications) network; not requiring a telephone line.urthermore, in the case of burglar entering the premises and cutting the telephone line, the GSM alarm would not be affected and still work as it does not require the use of a fixed phone line. So this security alarm is ideal for the place where no fixed phone line or hard to get one.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'what symptoms might a patient with a tmd have',
    [
        'TMD sufferers have a long list of symptoms, including chronic pain (https://youtu.be/SvMaJb8o2RI), many of which are in common with Parkinsonâ\x80\x99s disease (PD) symptoms.',
        'The word hero comes from the Greek á¼¥Ï\x81Ï\x89Ï\x82 (hÄ\x93rÅ\x8ds), hero, warrior, particularly one such as Heracles with divine ancestry or later given divine honors. literally protector or defender.',
        'Call of Duty 3. Call of Duty 3 is a World War II first-person shooter and the third installment in the Call of Duty video game series. Released on November 7, 2006, the game was developed by Treyarch, and was the first major installment in the Call of Duty series not to be developed by Infinity Ward. It was also the first not to be released on the PC platform. It was released on the PlayStation 2, PlayStation 3, Wii, Xbox, and Xbox 360.',
        'A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C (37 to 41 °F).emperature settings for refrigerator and freezer compartments are often given arbitrary numbers by manufacturers (for example, 1 through 9, warmest to coldest), but generally 3 to 5 °C (37 to 41 °F) is ideal for the refrigerator compartment and â\x88\x9218 °C (0 °F) for the freezer.',
        'Iâ\x80\x99m sure you would have these questions in your mind when you heard GSM alarm system at the first time. GSM alarm system is an alarm system that operating through GSM (global system for mobile communications) network; not requiring a telephone line.urthermore, in the case of burglar entering the premises and cutting the telephone line, the GSM alarm would not be affected and still work as it does not require the use of a fixed phone line. So this security alarm is ideal for the place where no fixed phone line or hard to get one.',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.6611 (+0.1715)     | 0.3144 (+0.0534)     | 0.6828 (+0.2632)     |
| mrr@10      | 0.6577 (+0.1802)     | 0.5085 (+0.0087)     | 0.7167 (+0.2900)     |
| **ndcg@10** | **0.7254 (+0.1850)** | **0.3421 (+0.0171)** | **0.7314 (+0.2308)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5527 (+0.1627)     |
| mrr@10      | 0.6276 (+0.1596)     |
| **ndcg@10** | **0.5996 (+0.1443)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 1,990,000 training samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | passage                                                                                           | score                                                          |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            | float                                                          |
  | details | <ul><li>min: 11 characters</li><li>mean: 34.61 characters</li><li>max: 124 characters</li></ul> | <ul><li>min: 82 characters</li><li>mean: 357.43 characters</li><li>max: 1034 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                              | passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | score            |
  |:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>what causes your tailbone to hurt</code>     | <code>A coccyx injury results in pain and discomfort in the tailbone area (the condition is called coccydynia). These injuries may result in a bruise, dislocation, or fracture (break) of the coccyx. Although they may be slow to heal, the majority of coccyx injuries can be managed with cautious treatment.ost tailbone injuries are caused by trauma to the coccyx area. 1  A fall onto the tailbone in the seated position, usually against a hard surface, is the most common cause of coccyx injuries. 2  A direct blow to the tailbone, such as those that occur during contact sports, can injure the coccyx.</code> | <code>1.0</code> |
  | <code>what muscles do trunk lateral flexion</code> | <code>It’s the same with the External Obliques, but unlike the External Obliques, they are not visible when fully developed. Action: 1  Supports abdominal wall, assists forced respiration, aids raising intra-abdominal pressure and, with muscles of other side, abducts and rotates trunk. 2  Contraction of one side alone laterally bends the trunk to that side and rotates the trunk to the other side.</code>                                                                                                                                                                                                         | <code>0.0</code> |
  | <code>brake horsepower definition</code>           | <code>When the brake lights will not come on, the first thing to check is the third-brake light. If it too is not working, the brake-light switch, a bad fuse or an unplugged harness is likely.ull up on the brake pedal and if the lights go out, switch mis-alignment or pedal position error is the likely cause. The final possibility is a wire shorted to power. Unplug the brake-light switch and if the lights stay on, a short circuit is the case.</code>                                                                                                                                                             | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Evaluation Dataset

#### msmarco

* Dataset: [msmarco](https://huggingface.co/datasets/sentence-transformers/msmarco) at [9e329ed](https://huggingface.co/datasets/sentence-transformers/msmarco/tree/9e329ed2e649c9d37b0d91dd6b764ff6fe671d83)
* Size: 10,000 evaluation samples
* Columns: <code>query</code>, <code>passage</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                          | passage                                                                                          | score                                                         |
  |:--------|:-----------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                                         | string                                                                                           | float                                                         |
  | details | <ul><li>min: 9 characters</li><li>mean: 33.72 characters</li><li>max: 193 characters</li></ul> | <ul><li>min: 55 characters</li><li>mean: 353.35 characters</li><li>max: 895 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
  | query                                                      | passage                                                                                                                                                                                                                                                                                                                                                                                                                                                               | score            |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>what symptoms might a patient with a tmd have</code> | <code>TMD sufferers have a long list of symptoms, including chronic pain (https://youtu.be/SvMaJb8o2RI), many of which are in common with Parkinson’s disease (PD) symptoms.</code>                                                                                                                                                                                                                                                                                 | <code>1.0</code> |
  | <code>what is a thermal protector</code>                   | <code>The word hero comes from the Greek ἥρως (hērōs), hero, warrior, particularly one such as Heracles with divine ancestry or later given divine honors. literally protector or defender.</code>                                                                                                                                                                                                                                                             | <code>0.0</code> |
  | <code>how many copies of call of duty wwii sold</code>     | <code>Call of Duty 3. Call of Duty 3 is a World War II first-person shooter and the third installment in the Call of Duty video game series. Released on November 7, 2006, the game was developed by Treyarch, and was the first major installment in the Call of Duty series not to be developed by Infinity Ward. It was also the first not to be released on the PC platform. It was released on the PlayStation 2, PlayStation 3, Wii, Xbox, and Xbox 360.</code> | <code>0.0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `seed`: 12
- `bf16`: True
- `dataloader_num_workers`: 4
- `load_best_model_at_end`: True
- `resume_from_checkpoint`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 12
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 2
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: True
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step      | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:-------:|:---------:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1      | -1        | -             | -               | 0.0186 (-0.5218)         | 0.2929 (-0.0321)          | 0.0429 (-0.4577)     | 0.1182 (-0.3372)           |
| 0.0001  | 1         | 0.7403        | -               | -                        | -                         | -                    | -                          |
| 0.3860  | 4000      | 0.201         | -               | -                        | -                         | -                    | -                          |
| 0.7719  | 8000      | 0.1544        | -               | -                        | -                         | -                    | -                          |
| 1.0     | 10364     | -             | 0.1478          | 0.7029 (+0.1625)         | 0.3798 (+0.0548)          | 0.7394 (+0.2388)     | 0.6074 (+0.1520)           |
| 1.1579  | 12000     | 0.1364        | -               | -                        | -                         | -                    | -                          |
| 1.5438  | 16000     | 0.1227        | -               | -                        | -                         | -                    | -                          |
| 1.9298  | 20000     | 0.1173        | -               | -                        | -                         | -                    | -                          |
| **2.0** | **20728** | **-**         | **0.1297**      | **0.7089 (+0.1685)**     | **0.3785 (+0.0535)**      | **0.7382 (+0.2375)** | **0.6085 (+0.1532)**       |
| 2.3157  | 24000     | 0.1014        | -               | -                        | -                         | -                    | -                          |
| 2.7017  | 28000     | 0.0969        | -               | -                        | -                         | -                    | -                          |
| 3.0     | 31092     | -             | 0.1195          | 0.6846 (+0.1442)         | 0.3906 (+0.0655)          | 0.7433 (+0.2426)     | 0.6062 (+0.1508)           |
| -1      | -1        | -             | -               | 0.7254 (+0.1850)         | 0.3421 (+0.0171)          | 0.7314 (+0.2308)     | 0.5996 (+0.1443)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.5
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->