File size: 4,555 Bytes
d847d1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-0.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-1.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-2.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-3.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-4.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-5.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-6.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-7.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-8.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-9.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-10.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-11.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-12.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-13.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-14.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-15.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-16.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-17.png
- text: 'A photo of <s0><s1> a bottle of coke '
output:
url: image-18.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: A photo of <s0><s1>
license: openrail++
---
# SDXL LoRA DreamBooth - skirano/cocacola
<Gallery />
## Model description
### These are skirano/cocacola LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
## Download model
### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- **LoRA**: download **[`cocacola.safetensors` here 💾](/skirano/cocacola/blob/main/cocacola.safetensors)**.
- Place it on your `models/Lora` folder.
- On AUTOMATIC1111, load the LoRA by adding `<lora:cocacola:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/).
- *Embeddings*: download **[`cocacola_emb.safetensors` here 💾](/skirano/cocacola/blob/main/cocacola_emb.safetensors)**.
- Place it on it on your `embeddings` folder
- Use it by adding `cocacola_emb` to your prompt. For example, `A photo of cocacola_emb`
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('skirano/cocacola', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='skirano/cocacola', filename='cocacola_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('A photo of <s0><s1>').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept `TOK` → use `<s0><s1>` in your prompt
## Details
All [Files & versions](/skirano/cocacola/tree/main).
The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py).
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|