--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer model-index: - name: mistral-7B-v0.1-open-orca results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: AutoModelForCausalLM tokenizer_config: Open-Orca/Mistral-7B-OpenOrca tokenizer_type: AutoTokenizer tokenizer_use_fast: false resize_token_embeddings_to_32x: false flash_attention: true xformers_attention: load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: skymizer/open-orca-conversations type: chat_template field_messages: messages train_on_split: train test_datasets: - path: skymizer/open-orca-conversations type: chat_template field_messages: messages split: test hf_use_auth_token: true dataset_prepared_path: /mnt/home/model-team/dataset/pretokenized/mistral-open-orca output_dir: /mnt/home/model-team/models/mistral-7B-v0.1-open-orca-vanilla sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false # eval_causal_lm_metrics: ["perplexity"] wandb_project: "axolotl_q_sparse_sft" wandb_entity: wandb_watch: wandb_name: "mistral-7B-v0.1-open-orca" wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 8 eval_batch_size: num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.000005 weight_decay: 0.0 adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 0.000001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false hub_model_id: "skymizer/mistral-7B-v0.1-open-orca" save_strategy: "steps" save_steps: 500 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 warmup_ratio: 0.03 eval_steps: 500 eval_table_size: eval_max_new_tokens: 2048 debug: deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: seed: 42 ```

# mistral-7B-v0.1-open-orca This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 182 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.189 | 0.0002 | 1 | 1.2125 | | 0.5119 | 0.0824 | 500 | 0.5199 | | 0.5351 | 0.1648 | 1000 | 0.5017 | | 0.5137 | 0.2472 | 1500 | 0.4893 | | 0.5229 | 0.3296 | 2000 | 0.4784 | | 0.4858 | 0.4120 | 2500 | 0.4687 | | 0.4767 | 0.4944 | 3000 | 0.4583 | | 0.4959 | 0.5768 | 3500 | 0.4494 | | 0.4502 | 0.6592 | 4000 | 0.4416 | | 0.4698 | 0.7416 | 4500 | 0.4353 | | 0.482 | 0.8240 | 5000 | 0.4307 | | 0.4248 | 0.9064 | 5500 | 0.4284 | | 0.4534 | 0.9888 | 6000 | 0.4278 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3