--- license: apache-2.0 --- ### Inference Code ```Python import numpy as np import pickle from keras.preprocessing.sequence import pad_sequences from keras.models import load_model def predict_word(seed_text: str, tokenizer, model, next_words: int = 2) -> str: for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre') predicted = np.argmax(model.predict(token_list), axis=-1) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text ```