DrishtiSharma commited on
Commit
3f5b139
·
1 Parent(s): 89ce038

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -66
README.md CHANGED
@@ -1,6 +1,5 @@
1
  ---
2
  license: mit
3
- language: es
4
  tags:
5
  - generated_from_trainer
6
  model-index:
@@ -8,74 +7,26 @@ model-index:
8
  results: []
9
  ---
10
 
11
- # poem-gen-spanish-t5-small
12
-
13
- This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the [Spanish Poetry Dataset](https://www.kaggle.com/andreamorgar/spanish-poetry-dataset/version/1) dataset.
14
-
15
- The model was created during the [First Spanish Hackathon](https://somosnlp.org/hackathon) organized by [Somos NLP](https://somosnlp.org/).
16
-
17
- The team who participated was composed by:
18
-
19
- - 🇨🇺 [Alberto Carmona Barthelemy](https://huggingface.co/milyiyo)
20
- - 🇪🇸 [Andrea Morales Garzón](https://huggingface.co/andreamorgar)
21
- - 🇨🇴 [Jorge Henao](https://huggingface.co/jorge-henao)
22
- - 🇮🇳 [Drishti Sharma](https://huggingface.co/DrishtiSharma)
23
 
 
24
 
 
25
  It achieves the following results on the evaluation set:
26
- - Loss: 2.8586
27
- - Perplexity: 17.43
28
 
29
  ## Model description
30
 
31
- The model was trained to generate spanish poems attending to some parameters like style, sentiment, words to include and starting phrase.
32
-
33
- Example:
34
 
35
- ```
36
- poema:
37
- estilo: Pablo Neruda &&
38
- sentimiento: positivo &&
39
- palabras: cielo, luna, mar &&
40
- texto: Todos fueron a verle pasar
41
- ```
42
 
43
- ### How to use
44
-
45
- You can use this model directly with a pipeline for masked language modeling:
46
-
47
- ```python
48
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
49
- model_name = 'hackathon-pln-es/poem-gen-spanish-t5-small'
50
- tokenizer = AutoTokenizer.from_pretrained(model_name)
51
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
52
-
53
- author, sentiment, word, start_text = 'Pablo Neruda', 'positivo', 'cielo', 'Todos fueron a la plaza'
54
- input_text = f"""poema: estilo: {author} && sentimiento: {sentiment} && palabras: {word} && texto: {start_text} """
55
- inputs = tokenizer(input_text, return_tensors="pt")
56
-
57
- outputs = model.generate(inputs["input_ids"],
58
- do_sample = True,
59
- max_length = 30,
60
- repetition_penalty = 20.0,
61
- top_k = 50,
62
- top_p = 0.92)
63
- detok_outputs = [tokenizer.decode(x, skip_special_tokens=True) for x in outputs]
64
- res = detok_outputs[0]
65
- ```
66
 
67
  ## Training and evaluation data
68
 
69
- The original dataset has the columns `author`, `content` and `title`.
70
- For each poem we generate new examples:
71
- - content: *line_i* , generated: *line_i+1*
72
- - content: *concatenate(line_i, line_i+1)* , generated: *line_i+2*
73
- - content: *concatenate(line_i, line_i+1, line_i+2)* , generated: *line_i+3*
74
-
75
- The resulting dataset has the columns `author`, `content`, `title` and `generated`.
76
-
77
- For each example we compute the sentiment of the generated column and the nouns. In the case of sentiment, we used the model `mrm8488/electricidad-small-finetuned-restaurant-sentiment-analysis` and for nouns extraction we used spaCy.
78
-
79
 
80
  ## Training procedure
81
 
@@ -94,14 +45,14 @@ The following hyperparameters were used during training:
94
 
95
  | Training Loss | Epoch | Step | Validation Loss |
96
  |:-------------:|:-----:|:------:|:---------------:|
97
- | 3.1354 | 0.73 | 30000 | 3.0147 |
98
- | 2.9761 | 1.46 | 60000 | 2.9498 |
99
- | 2.897 | 2.19 | 90000 | 2.9019 |
100
- | 2.8292 | 2.93 | 120000 | 2.8792 |
101
- | 2.7774 | 3.66 | 150000 | 2.8738 |
102
- | 2.741 | 4.39 | 180000 | 2.8634 |
103
- | 2.7128 | 5.12 | 210000 | 2.8666 |
104
- | 2.7108 | 5.85 | 240000 | 2.8595 |
105
 
106
 
107
  ### Framework versions
 
1
  ---
2
  license: mit
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
 
7
  results: []
8
  ---
9
 
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # poem-gen-spanish-t5-small
14
 
15
+ This model is a fine-tuned version of [hackathon-pln-es/poem-gen-spanish-t5-small](https://huggingface.co/hackathon-pln-es/poem-gen-spanish-t5-small) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 2.8723
 
18
 
19
  ## Model description
20
 
21
+ More information needed
 
 
22
 
23
+ ## Intended uses & limitations
 
 
 
 
 
 
24
 
25
+ More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Training and evaluation data
28
 
29
+ More information needed
 
 
 
 
 
 
 
 
 
30
 
31
  ## Training procedure
32
 
 
45
 
46
  | Training Loss | Epoch | Step | Validation Loss |
47
  |:-------------:|:-----:|:------:|:---------------:|
48
+ | 2.7082 | 0.73 | 30000 | 2.8878 |
49
+ | 2.6251 | 1.46 | 60000 | 2.8940 |
50
+ | 2.5796 | 2.19 | 90000 | 2.8853 |
51
+ | 2.5556 | 2.93 | 120000 | 2.8749 |
52
+ | 2.527 | 3.66 | 150000 | 2.8850 |
53
+ | 2.5024 | 4.39 | 180000 | 2.8760 |
54
+ | 2.4887 | 5.12 | 210000 | 2.8749 |
55
+ | 2.4808 | 5.85 | 240000 | 2.8707 |
56
 
57
 
58
  ### Framework versions