File size: 12,300 Bytes
eeb9027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
---
license: cc-by-4.0
base_model: bertin-project/bertin-roberta-base-spanish
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bertin_base_climate_detection_spa
  results: []
datasets:
- somosnlp/spa_climate_detection
language:
- es
widget:
- text: >
    El uso excesivo de fertilizantes nitrogenados -un fenómeno frecuente en la
    agricultura- da lugar a la producción de óxido nitroso, un potente gas de
    efecto invernadero. Un uso más juicioso de los fertilizantes puede frenar
    estas emisiones y reducir la producción de fertilizantes, que consume mucha
    energía.
pipeline_tag: text-classification
---


# Model Card for bertin_base_climate_detection_spa_v2

README Spanish Version: [README_ES](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/blob/main/README_ES.md) 

<p align="center">
  <img src="https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/resolve/main/model_image_repo_380.jpg" alt="Model Illustration" width="500">
</p>


This model is a fine-tuning version of the model: [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) using the dataset [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection).
The model is focused on the identification of texts on topics related to climate change and sustainability. This project was based on the English version of [climatebert/distilroberta-base-climate-detector](https://huggingface.co/climatebert/distilroberta-base-climate-detector). 

The motivation of the project was to create a repository in Spanish on information or resources on topics such as: climate change, sustainability, global warming, energy, etc; the idea is to give visibility to solutions, examples of good environmental practices or news that help us to combat the effects of climate change; in a way similar to what the project [Drawdown](https://drawdown.org/solutions/table-of-solutions) does but providing examples of solutions or new research on each topic. To achieve this
In order to achieve this objective, we consider that the identification of texts that speak about these topics is the first step. Some of the direct applications are: classification of papers and scientific publications, news, opinions.

Future steps: 
- We intend to create an advanced model that classifies texts related to climate change based on sectors (token classification), for example: classify based on electricity, agriculture, industry, transport, etc.
- Publish a sector-based dataset.
- Realize a Q/A model that can provide relevant information to the user on the topic of climate change.

## Model Details

### Model Description
- **Developed by:** [Gerardo Huerta](https://huggingface.co/Gerard-1705) [Gabriela Zuñiga](https://huggingface.co/Gabrielaz)
- **Funded by:** SomosNLP, HuggingFace
- **Model type:** Language model, instruction tuned, text classification
- **Language(s):** es-ES, es-PE
- **License:** cc-by-nc-sa-4.0
- **Fine-tuned from model:** [bertin-project/bertin-roberta-base-spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish)
- **Dataset used:** [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection)

### Fuentes de modelos

- **Repository:** [somosnlp/bertin_base_climate_detection_spa](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/tree/main) <!-- Enlace al `main` del repo donde tengáis los scripts, i.e.: o del mismo repo del modelo en HuggingFace o a GitHub. -->
- **Demo:** [identificacion de textos sobre cambio climatico y sustentabilidad](https://huggingface.co/spaces/somosnlp/Identificacion_de_textos_sobre_sustentabilidad_cambio_climatico)
- **Video presentation:** [Proyecto BERTIN-ClimID](https://www.youtube.com/watch?v=sfXLUP9Ei-o)

## Uses

### Direct Use
- News classification: With this model it is possible to classify news headlines related to the areas of climate change.
- Paper classification: The identification of scientific texts that disclose solutions and/or effects of climate change. For this use, the abstract of each paper can be used for identification.

### Indirect Use
- For the creation of information repositories regarding climate issues.
- This model can serve as a basis for creating new classification systems for climate solutions to disseminate new efforts to combat climate change in different sectors.
- Creation of new datasets that address the issue. 

### Out-of-Scope Use
- The use for text classification of unverifiable or unreliable sources and their dissemination, e.g., fake news or disinformation.

## Bias, Risks, and Limitations
En este punto no se han realizados estudios concretos sobre los sesgos y limitaciones, sin embargo hacemos los siguientes apuntes en base a experiencia previa y pruebas del modelo:
- Hereda los sesgos y limitaciones del modelo base con el que fue entrenado, para mas detalles véase: [BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling](http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403). Sin embargo, no son tan evidentes de encontrar por el tipo de tarea en el que se esta implementando el modelo como lo es la clasificacion de texto.
- Sesgos directos como por ejemplo el mayoritario uso de lenguaje de alto nivel en el dataset debido a que se utilizan textos extraidos de noticias, documentación legal de empresas que pueden complicar la identificación de textos con lenguajes de bajo nivel (ejemplo: coloquial). Para mitigar estos sesgos, se incluyeron en el dataset opiniones diversas sobre temas de cambio climatico extraidas de fuentes como redes sociales, adicional se hizo un rebalanceo de las etiquetas.
- El dataset nos hereda otras limitaciones como por ejemplo: el modelo pierde rendimiento en textos cortos, esto es debido a que la mayoria de los textos utilizados en el dataset tienen una longitud larga de entre 200 - 500 palabras. Nuevamente se intentó mitigar estas limitaciones con la inclusión de textos cortos.

### Recommendations

- Como hemos mencionado, el modelo tiende a bajar el rendimiento en textos cortos, por lo que lo recomendable es establecer un criterio de selección de textos largos a los cuales se necesita identificar su temática.

## How to Get Started with the Model

```python
## Asumiendo tener instalados transformers, torch
from transformers import AutoModelForSequenceClassification
import torch
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("somosnlp/bertin_base_climate_detection_spa")
model = AutoModelForSequenceClassification.from_pretrained("somosnlp/bertin_base_climate_detection_spa")

# Traduccion del label 
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}

# Funcion de inferencia
def inference_fun(Texto):
    inputs = tokenizer(Texto, return_tensors="pt")
    with torch.no_grad():
        logits = model(**inputs).logits
    predicted_class_id = logits.argmax().item()
    output_tag = model.config.id2label[predicted_class_id]
    return output_tag

input_text = "El uso excesivo de fertilizantes nitrogenados -un fenómeno frecuente en la agricultura- da lugar a la producción de óxido nitroso, un potente gas de efecto invernadero. Un uso más juicioso de los fertilizantes puede frenar estas emisiones y reducir la producción de fertilizantes, que consume mucha energía."

print(inference_fun(input_text))
```


## Training Details

### Training Data
The training data were obtained from the dataset [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection).
The training data represent about 79% of the total data in the dataset.

The labels are represented as follows:

Labels 1s

1000   -  data on paragraphs extracted from company reports on the subject.

600    -  data on various opinions, mostly short texts.

Labels 0s

300    -  data on paragraphs extracted from business reports not related to the subject.

500   -  data on news on various topics unrelated to the subject.

500   -  data on opinions on various topics unrelated to the subject.

### Training Procedure
You can check our Google Colab to review the training procedure we take: [Colab Entrenamiento](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/blob/main/entrenamiento_del_modelo.ipynb)
The accelerate configuration is as follows:
In which compute environment are you running?: 0
Which type of machine are you using?: No distributed training
Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:NO
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
Do you want to use DeepSpeed? [yes/NO]: NO
What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:all
Do you wish to use FP16 or BF16 (mixed precision)?: no

#### Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

#### Speeds, Sizes, Times
El modelo fue entrenado en 2 epocas con una duración total de 14.22 minutos de entrenamiento, 'train_runtime': 853.6759.
Como dato adicional: No se utilizó precision mixta (FP16 ó BF16)


#### Resultados del entrenamiento:

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 182  | 0.1964          | 0.9551   |
| No log        | 2.0   | 364  | 0.1592          | 0.9705   |


## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

The assessment data were obtained from the dataset [somosnlp/spa_climate_detection](https://huggingface.co/datasets/somosnlp/spa_climate_detection).
The assessment data represent about 21% of the total data in the dataset.
The labels are represented as follows:

Labels 1s

320    -  data on paragraphs extracted from company reports on the subject.

160    -  data on various opinions, mostly short texts.

Labels 0s

80     -  data on paragraphs extracted from business reports not related to the subject.

120    -  data on news on various topics unrelated to the subject.

100    -  data on opinions on various topics unrelated to the subject.


**Model reached the following results on evaluation dataset:**
- **Loss:** 0.1592
- **Accuracy:** 0.9705

#### Metrics
The metric was precision.

### Results
Look at the Inference section of Colab: [entrenamiento_del_modelo](https://huggingface.co/somosnlp/bertin_base_climate_detection_spa/blob/main/entrenamiento_del_modelo.ipynb)

Accuracy 0.95
Precision 0.916
Recall 0.99
F1 score 0.951

## Environmental Impact
Utilizando la herramienta de [ML CO2 IMPACT](https://mlco2.github.io/impact/#co2eq) calculamos que el siguiente impacto ambiental debido al entrenamiento:
-  **Tipo de hardware:** T4 
-  **Horas utilizadas (incluye pruebas e iteraciones para mejorar el modelo):** 4 horas
-  **Proveedor de nube:** Google Cloud (colab)
-  **Región computacional:** us-east
-  **Huella de carbono emitida:** 0.1kg CO2


## Technical Specifications

#### Software

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2

#### Hardware

- GPU equivalent to T4
- For reference, the model was trained on the free version of Google Colab

## License 

cc-by-nc-sa-4.0 Due to inheritance of the data used in the dataset.

## Citation
**BibTeX:**
```
@software{BERTIN-ClimID,
  author = {Gerardo Huerta, Gabriela Zuñiga},
  title = {BERTIN-ClimID: BERTIN-Base Climate-related text Identification},
  month = Abril,
  year = 2024,
  url = {https://huggingface.co/somosnlp/bertin_base_climate_detection_spa}
}
```

## More Information

This project was developed during the [Hackathon #Somos600M](https://somosnlp.org/hackathon) organized by SomosNLP. We thank all event organizers and sponsors for their support during the event.

**Team:**

- [Gerardo Huerta](https://huggingface.co/Gerard-1705)
- [Gabriela Zuñiga](https://huggingface.co/Gabrielaz)

## Contact

- [email protected]
- [email protected]