File size: 3,478 Bytes
b68a4ea
 
8cc7baf
 
b68a4ea
 
 
 
8cc7baf
b68a4ea
 
 
 
 
 
 
 
 
 
 
 
8cc7baf
b68a4ea
 
 
 
8cc7baf
b68a4ea
 
8cc7baf
b68a4ea
8cc7baf
 
b68a4ea
 
 
 
 
 
 
8cc7baf
 
b68a4ea
 
 
 
 
 
8cc7baf
 
b68a4ea
 
 
8cc7baf
b68a4ea
 
 
 
 
 
 
 
 
 
 
8cc7baf
 
 
b68a4ea
8cc7baf
b68a4ea
 
 
 
 
 
8cc7baf
 
 
 
 
 
b68a4ea
 
 
 
 
 
 
8cc7baf
b68a4ea
 
8cc7baf
b68a4ea
8cc7baf
b68a4ea
 
 
 
 
 
8cc7baf
b68a4ea
8cc7baf
b68a4ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc7baf
 
 
 
b68a4ea
 
 
8cc7baf
 
b68a4ea
 
 
8cc7baf
b68a4ea
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
library_name: peft
license: cc-by-sa-4.0
base_model: defog/sqlcoder-7b-2
tags:
- axolotl
- generated_from_trainer
model-index:
- name: eae8f117-788f-4851-8ae0-704076ca26e8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: defog/sqlcoder-7b-2
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
  - 520602e56e559160_train_data.json
  ds_type: json
  format: custom
  path: /root/G.O.D-test/core/data/520602e56e559160_train_data.json
  type:
    field_instruction: prompt
    field_output: gold_standard_solution
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_steps: 0
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: souging/eae8f117-788f-4851-8ae0-704076ca26e8
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000202
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/520602e56e559160_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 0
saves_per_epoch: null
seed: 20
sequence_len: 1536
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
wandb_entity: null
wandb_mode: online
wandb_name: ff2787c9-8dbd-4e47-864f-073c4a88122b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff2787c9-8dbd-4e47-864f-073c4a88122b
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# eae8f117-788f-4851-8ae0-704076ca26e8

This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.000202
- train_batch_size: 2
- eval_batch_size: 2
- seed: 20
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500

### Training results



### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3