--- title: Cheese Texture (Tabular) — AutoGluon Gradio App emoji: 🧀 colorFrom: yellow colorTo: blue sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false --- # Cheese Texture (Tabular) — Gradio App Predicts **texture** from nutritional/origin features using a **classmate's AutoGluon model**. - **Model (classmate):** [rlogh/cheese-texture-autogluon-classifier](https://huggingface.co/rlogh/cheese-texture-autogluon-classifier) - **Original dataset:** [aslan-ng/cheese-tabular](https://huggingface.co/datasets/aslan-ng/cheese-tabular) ## How to use 1. Set **fat**, **price**, **protein**, **origin**, and **holed**. 2. Choose inference parameters (base model, output mode, Top‑k). 3. View **Predicted texture**, **probability table**, and a **summary** of your input + results. ## Notes - Sliders are constrained to dataset‑observed ranges. - Inputs are validated and friendly warnings are shown when we auto‑correct values. - This app uses AutoGluon's `TabularPredictor` for inference. ## Credits - Model: rlogh (classmate) - Dataset: aslan-ng ## Citations - Model: rlogh/cheese-texture-autogluon-classifier (Hugging Face model card) - Dataset: aslan-ng/cheese-tabular (Hugging Face dataset card, MIT license) ## License - MIT ## Acknowledgments - Thanks to rlogh for the trained AutoGluon model and to aslan-ng for the dataset. - Collaboration & GenAI usage: This submission was prepared with peer feedback and limited use of generative AI (ChatGPT) for packaging/refactoring and documentation polish.