Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,014 Bytes
5f91254 d550e12 b260fbd 0c19bde b260fbd bb3e0ce 0510130 b260fbd d550e12 b260fbd 532834a b260fbd 749668a b260fbd 55ac5d5 3342753 2e349c0 b260fbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
from diffusers import DiffusionPipeline
import spaces
import torch
import PIL.Image
import gradio as gr
import gradio.components as grc
import numpy as np
pipeline = DiffusionPipeline.from_pretrained("1aurent/ddpm-mnist")
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = pipeline.to(device=device)
@spaces.GPU
def predict(steps, seed):
generator = torch.manual_seed(seed)
for i in range(1,steps):
yield pipeline(generator=generator, num_inference_steps=i).images[0]
gr.Interface(
predict,
inputs=[
grc.Slider(1, 100, label='Inference Steps', value=12, step=1),
grc.Slider(0, 2147483647, label='Seed', value=69420, step=1),
],
outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
css="#output_image{width: 256px !important; height: 256px !important;}",
title="Unconditional MNIST",
description="A DDIM scheduler and UNet model trained on the MNIST dataset for unconditional image generation.",
).queue().launch() |