1inkusFace commited on
Commit
df7b4d1
·
verified ·
1 Parent(s): 007e546

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -1,8 +1,5 @@
1
  import spaces # If using Hugging Face Spaces
2
  import os
3
- import torch
4
- import gradio as gr
5
-
6
  # ## GGUF MOD: Unused environment variables for PyTorch have been removed.
7
  # ## GGUF MOD: ctransformers handles its own memory and GPU management.
8
  os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
@@ -14,11 +11,16 @@ os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
14
  # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
15
  # os.environ["SAFETENSORS_FAST_GPU"] = "1"
16
  os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
 
 
 
 
17
 
18
  # ## GGUF MOD: Import AutoModelForCausalLM from ctransformers instead of transformers.
19
  # ## GGUF MOD: BitsAndBytesConfig is no longer needed.
20
  from ctransformers import AutoModelForCausalLM
21
  from transformers import AutoTokenizer
 
22
 
23
  # ## GGUF MOD: PyTorch backend settings are not used by ctransformers.
24
  torch.backends.cuda.matmul.allow_tf32 = True
@@ -46,6 +48,9 @@ print("Loading GGUF model...")
46
  # leading to much faster inference. Adjust this number based on your VRAM.
47
  # - hf=True: This tells ctransformers to download from the Hugging Face Hub.
48
 
 
 
 
49
  def loadModel():
50
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
51
  model = AutoModelForCausalLM.from_pretrained(
@@ -58,10 +63,7 @@ def loadModel():
58
  )
59
  return model
60
 
61
- @spaces.GPU()
62
- def device_wake():
63
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
64
- device_wake()
65
 
66
  model = loadModel()
67
  print("GGUF Model loaded successfully.")
 
1
  import spaces # If using Hugging Face Spaces
2
  import os
 
 
 
3
  # ## GGUF MOD: Unused environment variables for PyTorch have been removed.
4
  # ## GGUF MOD: ctransformers handles its own memory and GPU management.
5
  os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1')
 
11
  # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts)
12
  # os.environ["SAFETENSORS_FAST_GPU"] = "1"
13
  os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
14
+ import torch
15
+ import gradio as gr
16
+
17
+
18
 
19
  # ## GGUF MOD: Import AutoModelForCausalLM from ctransformers instead of transformers.
20
  # ## GGUF MOD: BitsAndBytesConfig is no longer needed.
21
  from ctransformers import AutoModelForCausalLM
22
  from transformers import AutoTokenizer
23
+ from image_gen_aux import UpscaleWithModel
24
 
25
  # ## GGUF MOD: PyTorch backend settings are not used by ctransformers.
26
  torch.backends.cuda.matmul.allow_tf32 = True
 
48
  # leading to much faster inference. Adjust this number based on your VRAM.
49
  # - hf=True: This tells ctransformers to download from the Hugging Face Hub.
50
 
51
+ upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device('cuda'))
52
+ upscaler.to(torch.device('cpu'))
53
+
54
  def loadModel():
55
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
56
  model = AutoModelForCausalLM.from_pretrained(
 
63
  )
64
  return model
65
 
66
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
 
 
67
 
68
  model = loadModel()
69
  print("GGUF Model loaded successfully.")