|
from math import ceil |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from re import match |
|
import seaborn as sns |
|
|
|
from model import Model |
|
|
|
class Data: |
|
"""Container for input and output data""" |
|
|
|
model = Model() |
|
|
|
def parse_seq(self, src: str): |
|
"""Parse input sequence""" |
|
self.seq = src.strip().upper().replace('\n', '') |
|
if not all(x in self.model.alphabet for x in self.seq): |
|
raise RuntimeError("Unrecognised characters in sequence") |
|
|
|
def parse_sub(self, trg: str): |
|
"""Parse input substitutions""" |
|
self.mode = None |
|
self.sub = list() |
|
self.trg = trg.strip().upper().split() |
|
self.resi = list() |
|
|
|
|
|
if len(self.trg) == 1 and len(self.trg[0]) == len(self.seq) and match(r'^\w+$', self.trg[0]): |
|
|
|
self.mode = 'MUT' |
|
for resi, (src, trg) in enumerate(zip(self.seq, self.trg[0]), 1): |
|
if src != trg: |
|
self.sub.append(f"{src}{resi}{trg}") |
|
self.resi.append(resi) |
|
else: |
|
if all(match(r'\d+', x) for x in self.trg): |
|
|
|
self.mode = 'DMS' |
|
for resi in map(int, self.trg): |
|
src = self.seq[resi-1] |
|
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src, ''): |
|
self.sub.append(f"{src}{resi}{trg}") |
|
self.resi.append(resi) |
|
elif all(match(r'[A-Z]\d+[A-Z]', x) for x in self.trg): |
|
|
|
self.mode = 'MUT' |
|
self.sub = self.trg |
|
self.resi = [int(x[1:-1]) for x in self.trg] |
|
for s, *resi, _ in self.trg: |
|
if self.seq[int(''.join(resi))-1] != s: |
|
raise RuntimeError(f"Unrecognised input substitution {self.seq[int(''.join(resi))]}{int(''.join(resi))} /= {s}{int(''.join(resi))}") |
|
else: |
|
self.mode = 'TMS' |
|
for resi, src in enumerate(self.seq, 1): |
|
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src, ''): |
|
self.sub.append(f"{src}{resi}{trg}") |
|
self.resi.append(resi) |
|
|
|
self.sub = pd.DataFrame(self.sub, columns=['0']) |
|
|
|
def __init__(self, src:str, trg:str, model_name:str='facebook/esm2_t33_650M_UR50D', scoring_strategy:str='masked-marginals', out_file='out'): |
|
"initialise data" |
|
|
|
if self.model.model_name != model_name: |
|
self.model_name = model_name |
|
self.model = Model(model_name) |
|
self.parse_seq(src) |
|
self.offset = 0 |
|
self.parse_sub(trg) |
|
self.scoring_strategy = scoring_strategy |
|
self.token_probs = None |
|
self.out = pd.DataFrame(self.sub, columns=['0', self.model_name]) |
|
self.out_img = f'{out_file}.png' |
|
self.out_csv = f'{out_file}.csv' |
|
|
|
def parse_output(self) -> None: |
|
"format output data for visualisation" |
|
if self.mode == 'TMS': |
|
self.process_tms_mode() |
|
self.out.to_csv(self.out_csv, float_format='%.2f') |
|
else: |
|
if self.mode == 'DMS': |
|
self.sort_by_residue_and_score() |
|
elif self.mode == 'MUT': |
|
self.sort_by_score() |
|
else: |
|
raise RuntimeError(f"Unrecognised mode {self.mode}") |
|
self.out.columns = [str(i) for i in range(self.out.shape[1])] |
|
self.out_img = (self.out.style |
|
.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x) |
|
.hide(axis=0) |
|
.background_gradient(cmap="RdYlGn", vmax=8, vmin=-8)) |
|
self.out.to_csv(self.out_csv, float_format='%.2f', index=False, header=False) |
|
|
|
def sort_by_score(self): |
|
self.out = self.out.sort_values(self.model_name, ascending=False) |
|
|
|
def sort_by_residue_and_score(self): |
|
self.out = (self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int)) |
|
.sort_values(['resi', self.model_name], ascending=[True,False]) |
|
.groupby(['resi']) |
|
.head(19) |
|
.drop(['resi'], axis=1)) |
|
self.out = pd.concat([self.out.iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(self.out.shape[0]//19)] |
|
, axis=1).set_axis(range(self.out.shape[0]//19*2), axis='columns') |
|
|
|
def process_tms_mode(self): |
|
self.out = self.assign_resi_and_group() |
|
self.out = self.concat_and_set_axis() |
|
self.out /= self.out.abs().max().max() |
|
divs = self.calculate_divs() |
|
ncols = min(divs, key=lambda x: abs(x-60)) |
|
nrows = ceil(self.out.shape[1]/ncols) |
|
ncols = self.adjust_ncols(ncols, nrows) |
|
self.plot_heatmap(ncols, nrows) |
|
|
|
def assign_resi_and_group(self): |
|
return (self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int)) |
|
.groupby(['resi']) |
|
.head(19)) |
|
|
|
def concat_and_set_axis(self): |
|
return (pd.concat([(self.out.iloc[19*x:19*(x+1)] |
|
.pipe(self.create_dataframe) |
|
.sort_values(['0'], ascending=[True]) |
|
.drop(['resi', '0'], axis=1) |
|
.set_axis(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', |
|
'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']) |
|
.astype(float) |
|
) for x in range(self.out.shape[0]//19)] |
|
, axis=1) |
|
.set_axis([f'{a}{i}' for i, a in enumerate(self.seq, 1)], axis='columns')) |
|
|
|
def create_dataframe(self, df): |
|
return pd.concat([pd.Series([df.iloc[0, 0][:-1]+df.iloc[0, 0][0], 0, 0], index=df.columns).to_frame().T, df], axis=0, ignore_index=True) |
|
|
|
def calculate_divs(self): |
|
return [x for x in range(1, self.out.shape[1]+1) if self.out.shape[1] % x == 0 and 30 <= x and x <= 60] or [60] |
|
|
|
def adjust_ncols(self, ncols, nrows): |
|
while self.out.shape[1]/ncols < nrows and ncols > 45 and ncols*nrows >= self.out.shape[1]: |
|
ncols -= 1 |
|
return ncols + 1 |
|
|
|
def plot_heatmap(self, ncols, nrows): |
|
if nrows < 2: |
|
self.plot_single_heatmap() |
|
else: |
|
self.plot_multiple_heatmaps(ncols, nrows) |
|
|
|
plt.savefig(self.out_img, format='png', dpi=300) |
|
|
|
def plot_single_heatmap(self): |
|
fig = plt.figure(figsize=(12, 6)) |
|
sns.heatmap(self.out |
|
, cmap='RdBu' |
|
, cbar=False |
|
, square=True |
|
, xticklabels=1 |
|
, yticklabels=1 |
|
, center=0 |
|
, annot=self.out.map(lambda x: ' ' if x != 0 else '·') |
|
, fmt='s' |
|
, annot_kws={'size': 'xx-large'}) |
|
fig.tight_layout() |
|
|
|
def plot_multiple_heatmaps(self, ncols, nrows): |
|
fig, ax = plt.subplots(nrows=nrows, figsize=(12, 6*nrows)) |
|
for i in range(nrows): |
|
tmp = self.out.iloc[:,i*ncols:(i+1)*ncols] |
|
label = tmp.map(lambda x: ' ' if x != 0 else '·') |
|
sns.heatmap(tmp |
|
, ax=ax[i] |
|
, cmap='RdBu' |
|
, cbar=False |
|
, square=True |
|
, xticklabels=1 |
|
, yticklabels=1 |
|
, center=0 |
|
, annot=label |
|
, fmt='s' |
|
, annot_kws={'size': 'xx-large'}) |
|
ax[i].set_yticklabels(ax[i].get_yticklabels(), rotation=0) |
|
ax[i].set_xticklabels(ax[i].get_xticklabels(), rotation=90) |
|
fig.tight_layout() |
|
|
|
def calculate(self): |
|
"run model and parse output" |
|
self.model.run_model(self) |
|
self.parse_output() |
|
return self |
|
|
|
def csv(self): |
|
"return output data" |
|
return self.out_csv |
|
|
|
def image(self): |
|
"return output data" |
|
return self.out_img |
|
|