Spaces:
Running
Running
File size: 11,256 Bytes
1835c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import streamlit as st
import time
import asyncio
import nest_asyncio
import traceback
from typing import List, Dict, Any
import re # for extracting citation IDs
# --- Configuration and Service Initialization ---
try:
print("App: Loading config...")
import config
print("App: Loading utils...")
from utils import clean_source_text
print("App: Loading services...")
from services.retriever import init_retriever, get_retriever_status
from services.openai_service import init_openai_client, get_openai_status
print("App: Loading RAG processor...")
from rag_processor import execute_validate_generate_pipeline, PIPELINE_VALIDATE_GENERATE_GPT4O
print("App: Imports successful.")
except ImportError as e:
st.error(f"Fatal Error: Module import failed. {e}", icon="🚨")
traceback.print_exc()
st.stop()
except Exception as e:
st.error(f"Fatal Error during initial setup: {e}", icon="🚨")
traceback.print_exc()
st.stop()
nest_asyncio.apply()
# --- Initialize Required Services ---
print("App: Initializing services...")
try:
retriever_ready_init, retriever_msg_init = init_retriever()
openai_ready_init, openai_msg_init = init_openai_client()
print("App: Service initialization calls complete.")
except Exception as init_err:
st.error(f"Error during service initialization: {init_err}", icon="🔥")
traceback.print_exc()
# --- Streamlit Page Configuration and Styling ---
st.set_page_config(page_title="Divrey Yoel AI Chat (GPT-4o Gen)", layout="wide")
st.markdown("""<style> /* ... Keep existing styles ... */ </style>""", unsafe_allow_html=True)
st.markdown("<h1 class='rtl-text'> דברות קודש - חיפוש ועיון</h1>", unsafe_allow_html=True)
st.markdown("<p class='rtl-text'>מבוסס על ספרי דברי יואל מסאטמאר זצוק'ל זי'ע - אחזור מידע חכם (RAG)</p>", unsafe_allow_html=True)
st.markdown("<p class='rtl-text' style='font-size: 0.9em; color: #555;'>תהליך: אחזור -> אימות (GPT-4o) -> יצירה (GPT-4o)</p>", unsafe_allow_html=True)
# --- UI Helper Functions ---
def display_sidebar() -> Dict[str, Any]:
st.sidebar.markdown("<h3 class='rtl-text'>מצב המערכת</h3>", unsafe_allow_html=True)
retriever_ready, _ = get_retriever_status()
openai_ready, _ = get_openai_status()
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מאחזר (Pinecone):</strong> {'✅' if retriever_ready else '❌'}</p>",
unsafe_allow_html=True
)
if not retriever_ready:
st.sidebar.error("מאחזר אינו זמין.", icon="🛑")
st.stop()
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>OpenAI ({config.OPENAI_VALIDATION_MODEL} / {config.OPENAI_GENERATION_MODEL}):</strong> {'✅' if openai_ready else '❌'}</p>",
unsafe_allow_html=True
)
if not openai_ready:
st.sidebar.error("OpenAI אינו זמין.", icon="⚠️")
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown("<h3 class='rtl-text'>הגדרות חיפוש</h3>", unsafe_allow_html=True)
n_retrieve = st.sidebar.slider("מספר פסקאות לאחזור", 1, 300, config.DEFAULT_N_RETRIEVE)
max_validate = min(n_retrieve, 100)
n_validate = st.sidebar.slider(
"פסקאות לאימות (GPT-4o)",
1,
max_validate,
min(config.DEFAULT_N_VALIDATE, max_validate),
disabled=not openai_ready
)
st.sidebar.info("התשובות מבוססות רק על המקורות שאומתו.", icon="ℹ️")
return {"n_retrieve": n_retrieve, "n_validate": n_validate, "services_ready": (retriever_ready and openai_ready)}
def display_chat_message(message: Dict[str, Any]):
role = message.get("role", "assistant")
with st.chat_message(role):
st.markdown(message.get('content', ''), unsafe_allow_html=True)
if role == "assistant" and message.get("final_docs"):
docs = message["final_docs"]
exp_title = f"<span class='rtl-text'>הצג {len(docs)} קטעי מקור שנשלחו למחולל (GPT-4o)</span>"
with st.expander(exp_title, expanded=False):
st.markdown("<div dir='rtl' class='expander-content'>", unsafe_allow_html=True)
for i, doc in enumerate(docs, start=1):
if not isinstance(doc, dict):
continue
source = doc.get('source_name', '') or 'מקור לא ידוע'
text = clean_source_text(doc.get('hebrew_text', ''))
st.markdown(
f"<div class='source-info rtl-text'><strong>מקור {i}:</strong> {source}</div>",
unsafe_allow_html=True
)
st.markdown(f"<div class='hebrew-text'>{text}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
def display_status_updates(status_log: List[str]):
if status_log:
with st.expander("<span class='rtl-text'>הצג פרטי עיבוד</span>", expanded=False):
for u in status_log:
st.markdown(
f"<code class='status-update rtl-text'>- {u}</code>",
unsafe_allow_html=True
)
# --- Main Application Logic ---
if "messages" not in st.session_state:
st.session_state.messages = []
rag_params = display_sidebar()
# Render history
for msg in st.session_state.messages:
display_chat_message(msg)
if prompt := st.chat_input("שאל שאלה בענייני חסידות...", disabled=not rag_params["services_ready"]):
st.session_state.messages.append({"role": "user", "content": prompt})
display_chat_message(st.session_state.messages[-1])
with st.chat_message("assistant"):
msg_placeholder = st.empty()
status_container = st.status("מעבד בקשה...", expanded=True)
chunks: List[str] = []
try:
def status_cb(m):
status_container.update(label=f"<span class='rtl-text'>{m}</span>")
def stream_cb(c):
chunks.append(c)
msg_placeholder.markdown(
f"<div dir='rtl' class='rtl-text'>{''.join(chunks)}▌</div>",
unsafe_allow_html=True
)
loop = asyncio.get_event_loop()
final_rag = loop.run_until_complete(
execute_validate_generate_pipeline(
history=st.session_state.messages,
params=rag_params,
status_callback=status_cb,
stream_callback=stream_cb
)
)
if isinstance(final_rag, dict):
raw = final_rag.get("final_response", "")
err = final_rag.get("error")
log = final_rag.get("status_log", [])
docs = final_rag.get("generator_input_documents", [])
pipeline = final_rag.get("pipeline_used", PIPELINE_VALIDATE_GENERATE_GPT4O)
# wrap in RTL div if needed
final = raw
if not (err and final.strip().startswith("<div")) and not final.strip().startswith((
'<div', '<p', '<ul', '<ol', '<strong'
)):
final = f"<div dir='rtl' class='rtl-text'>{final or 'לא התקבלה תשובה מהמחולל.'}</div>"
msg_placeholder.markdown(final, unsafe_allow_html=True)
# --- Show only cited paragraphs ---
cited_ids = set(re.findall(r'\(מקור\s*([0-9]+)\)', raw))
if cited_ids:
enumerated_docs = list(enumerate(docs, start=1))
docs_to_show = [(idx, doc) for idx, doc in enumerated_docs if str(idx) in cited_ids]
else:
docs_to_show = list(enumerate(docs, start=1))
if docs_to_show:
label = f"<span class='rtl-text'>הצג {len(docs_to_show)} קטעי מקור שהוזכרו בתשובה</span>"
with st.expander(label, expanded=False):
st.markdown("<div dir='rtl' class='expander-content'>", unsafe_allow_html=True)
for idx, doc in docs_to_show:
source = doc.get('source_name', '') or 'מקור לא ידוע'
text = clean_source_text(doc.get('hebrew_text', ''))
st.markdown(
f"<div class='source-info rtl-text'><strong>מקור {idx}:</strong> {source}</div>",
unsafe_allow_html=True
)
st.markdown(f"<div class='hebrew-text'>{text}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# --- end filter display ---
# store assistant message
assistant_data = {
"role": "assistant",
"content": final,
"final_docs": docs,
"pipeline_used": pipeline,
"status_log": log,
"error": err
}
st.session_state.messages.append(assistant_data)
display_status_updates(log)
if err:
status_container.update(label="שגיאה בעיבוד!", state="error", expanded=False)
else:
status_container.update(label="העיבוד הושלם!", state="complete", expanded=False)
else:
msg_placeholder.markdown(
"<div dir='rtl' class='rtl-text'><strong>שגיאה בלתי צפויה בתקשורת.</strong></div>",
unsafe_allow_html=True
)
st.session_state.messages.append({
"role": "assistant",
"content": "שגיאה בלתי צפויה בתקשורת.",
"final_docs": [],
"pipeline_used": "Error",
"status_log": ["Unexpected result"],
"error": "Unexpected"
})
status_container.update(label="שגיאה בלתי צפויה!", state="error", expanded=False)
except Exception as e:
traceback.print_exc()
err_html = (f"<div dir='rtl' class='rtl-text'><strong>שגיאה קריטית!</strong><br>נסה לרענן."
f"<details><summary>פרטים</summary><pre>{traceback.format_exc()}</pre></details></div>")
msg_placeholder.error(err_html, icon="🔥")
st.session_state.messages.append({
"role": "assistant",
"content": err_html,
"final_docs": [],
"pipeline_used": "Critical Error",
"status_log": [f"Critical: {type(e).__name__}"],
"error": str(e)
})
status_container.update(label=str(e), state="error", expanded=False)
|