april27divreyyoel / openai_service.py
ABE101's picture
Upload 3 files
fd69e88 verified
raw
history blame contribute delete
9.78 kB
# services/openai_service.py (Added Generation Function)
import openai
import traceback
import json
import asyncio
from typing import Dict, Optional, Tuple, List, AsyncGenerator # Added List, AsyncGenerator
from langsmith import traceable
try:
import config
from utils import format_context_for_openai # Import new formatter
except ImportError:
print("Error: Failed to import config or utils in openai_service.py")
raise SystemExit("Failed imports in openai_service.py")
# --- Globals ---
openai_async_client: Optional[openai.AsyncOpenAI] = None
is_openai_ready: bool = False
openai_status_message: str = "OpenAI service not initialized."
# --- Initialization ---
def init_openai_client() -> Tuple[bool, str]:
"""Initializes the OpenAI async client."""
global openai_async_client, is_openai_ready, openai_status_message
if is_openai_ready: return True, openai_status_message
if not config.OPENAI_API_KEY:
openai_status_message = "Error: OPENAI_API_KEY not found in Secrets."
is_openai_ready = False; return False, openai_status_message
try:
openai_async_client = openai.AsyncOpenAI(api_key=config.OPENAI_API_KEY)
# Update status message to reflect dual use
openai_status_message = f"OpenAI service ready (Validate: {config.OPENAI_VALIDATION_MODEL}, Generate: {config.OPENAI_GENERATION_MODEL})."
is_openai_ready = True
print("OpenAI Service: Async client initialized.")
return True, openai_status_message
except Exception as e:
error_msg = f"Error initializing OpenAI async client: {type(e).__name__} - {e}"; print(error_msg); traceback.print_exc()
openai_status_message = error_msg; is_openai_ready = False; openai_async_client = None
return False, openai_status_message
def get_openai_status() -> Tuple[bool, str]:
"""Returns the current status of the OpenAI service."""
if not is_openai_ready: init_openai_client()
return is_openai_ready, openai_status_message
# --- Validation Function (Keep As Is) ---
@traceable(name="openai-validate-paragraph")
async def validate_relevance_openai(
paragraph_data: Dict, user_question: str, paragraph_index: int
) -> Optional[Dict]:
# ... (Keep the existing implementation of validate_relevance_openai) ...
global openai_async_client; ready, msg = get_openai_status()
if not ready or openai_async_client is None: print(f"OpenAI validation failed (Para {paragraph_index+1}): Client not ready - {msg}"); return None
safe_paragraph_data = paragraph_data.copy() if isinstance(paragraph_data, dict) else {}
if not paragraph_data or not isinstance(paragraph_data, dict):
return {"validation": {"contains_relevant_info": False, "justification": "Input data empty/invalid."}, "paragraph_data": safe_paragraph_data}
hebrew_text = paragraph_data.get('hebrew_text', '').strip(); english_text = paragraph_data.get('english_text', '').strip()
if not hebrew_text and not english_text: return {"validation": {"contains_relevant_info": False, "justification": "Paragraph text empty."}, "paragraph_data": safe_paragraph_data}
validation_model = config.OPENAI_VALIDATION_MODEL
prompt_content = f"""User Question (Hebrew):\n"{user_question}"\n\nText Paragraph (Paragraph {paragraph_index+1}):\nHebrew:\n---\n{hebrew_text or "(No Hebrew)"}\n---\nEnglish:\n---\n{english_text or "(No English)"}\n---\n\nInstruction:\nAnalyze the Text Paragraph. Determine if it contains information that *directly* answers or significantly contributes to answering the User Question.\nRespond ONLY with valid JSON: {{"contains_relevant_info": boolean, "justification": "Brief Hebrew explanation"}}\nExample: {{"contains_relevant_info": true, "justification": "..."}} OR {{"contains_relevant_info": false, "justification": "..."}}\nOutput only the JSON object."""
try:
response = await openai_async_client.chat.completions.create(model=validation_model, messages=[{"role": "user", "content": prompt_content}], temperature=0.1, max_tokens=150, response_format={"type": "json_object"})
json_string = response.choices[0].message.content
try:
validation_result = json.loads(json_string)
if not isinstance(validation_result, dict) or 'contains_relevant_info' not in validation_result or 'justification' not in validation_result or not isinstance(validation_result['contains_relevant_info'], bool) or not isinstance(validation_result['justification'], str):
print(f"Error (OpenAI Validate {paragraph_index+1}): Invalid JSON structure: {validation_result}")
return {"validation": {"contains_relevant_info": False, "justification": "Error: Invalid response format."}, "paragraph_data": safe_paragraph_data}
return {"validation": validation_result, "paragraph_data": safe_paragraph_data}
except json.JSONDecodeError as json_err:
print(f"Error (OpenAI Validate {paragraph_index+1}): Failed JSON decode: {json_err}. Response: {json_string}")
return {"validation": {"contains_relevant_info": False, "justification": "Error: Failed to parse JSON response."}, "paragraph_data": safe_paragraph_data}
except openai.RateLimitError as e: print(f"Error (OpenAI Validate {paragraph_index+1}): Rate Limit: {e}"); return {"validation": {"contains_relevant_info": False, "justification": "Error: Rate limit hit."}, "paragraph_data": safe_paragraph_data}
except openai.APIConnectionError as e: print(f"Error (OpenAI Validate {paragraph_index+1}): Connection Error: {e}"); return None
except openai.APIStatusError as e: print(f"Error (OpenAI Validate {paragraph_index+1}): API Status {e.status_code}: {e.response}"); return None
except Exception as e: print(f"Error (OpenAI Validate {paragraph_index+1}): Unexpected: {type(e).__name__}"); traceback.print_exc(); return None
# --- NEW Generation Function ---
@traceable(name="openai-generate-stream")
async def generate_openai_stream(
messages: List[Dict],
context_documents: List[Dict],
) -> AsyncGenerator[str, None]:
"""
Generates a response stream using OpenAI GPT model based on history and context.
Yields text chunks or an error message string.
"""
global openai_async_client
ready, msg = get_openai_status()
if not ready or openai_async_client is None:
yield f"--- Error: OpenAI client not available for generation: {msg} ---"
return
try:
# Validate context format
if not isinstance(context_documents, list) or not all(isinstance(item, dict) for item in context_documents):
yield f"--- Error: Invalid format for context_documents (expected List[Dict]). ---"
return
# Format context using the new utility function
formatted_context = format_context_for_openai(context_documents)
if not formatted_context or formatted_context.startswith("No"): # Check for empty or failed formatting
yield f"--- Error: No valid context provided or formatted for OpenAI generator. ---"
return
# Find the latest user message from history
last_user_msg_content = "User question not found."
if messages and isinstance(messages, list):
for msg_ in reversed(messages):
if isinstance(msg_, dict) and msg_.get("role") == "user":
last_user_msg_content = str(msg_.get("content") or "")
break
# Construct the final user prompt for the generation model
user_prompt_content = f"Source Texts:\n{formatted_context}\n\nUser Question:\n{last_user_msg_content}\n\nAnswer (in Hebrew, based ONLY on the Source Texts provided):"
# Prepare messages for the API call - System Prompt + User Prompt
api_messages = [
{"role": "system", "content": config.OPENAI_SYSTEM_PROMPT},
{"role": "user", "content": user_prompt_content}
]
generation_model = config.OPENAI_GENERATION_MODEL
print(f" -> Sending stream request to OpenAI (Model: {generation_model})...")
print(f" -> User Prompt Content (start): {user_prompt_content[:300]}...") # Log start of prompt
# Make the streaming API call
stream = await openai_async_client.chat.completions.create(
model=generation_model,
messages=api_messages,
temperature=0.5, # Adjust temperature as needed
max_tokens=3000, # Set a reasonable max token limit
stream=True
)
print(f" -> OpenAI stream processing...")
async for chunk in stream:
content = chunk.choices[0].delta.content
if content is not None:
yield content # Yield the text chunk
# Add a small sleep to avoid blocking the event loop entirely
await asyncio.sleep(0.01)
print(f" -> OpenAI stream finished.")
# --- Exception Handling ---
except openai.RateLimitError as e:
error_msg = f"\n\n--- Error: OpenAI rate limit exceeded during generation: {e} ---"
print(error_msg); traceback.print_exc(); yield error_msg
except openai.APIConnectionError as e:
error_msg = f"\n\n--- Error: OpenAI connection error during generation: {e} ---"
print(error_msg); traceback.print_exc(); yield error_msg
except openai.APIStatusError as e:
error_msg = f"\n\n--- Error: OpenAI API status error ({e.status_code}) during generation: {e.response} ---"
print(error_msg); traceback.print_exc(); yield error_msg
except Exception as e:
error_msg = f"\n\n--- Error: Unexpected error during OpenAI generation: {type(e).__name__} - {e} ---"
print(error_msg); traceback.print_exc(); yield error_msg