Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch._dynamo.config.disable = True | |
from collections.abc import Iterator | |
from transformers import ( | |
Gemma3ForConditionalGeneration, | |
TextIteratorStreamer, | |
Gemma3Processor, | |
Gemma3nForConditionalGeneration, | |
) | |
import spaces | |
import tempfile | |
from threading import Thread | |
import gradio as gr | |
import os | |
from dotenv import load_dotenv, find_dotenv | |
import cv2 | |
from loguru import logger | |
from PIL import Image | |
dotenv_path = find_dotenv() | |
load_dotenv(dotenv_path) | |
model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-12b-it") | |
model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3n-E4B-it") | |
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB | |
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB | |
input_processor = Gemma3Processor.from_pretrained(model_12_id) | |
model_12 = Gemma3ForConditionalGeneration.from_pretrained( | |
model_12_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
attn_implementation="eager", | |
) | |
model_3n = Gemma3nForConditionalGeneration.from_pretrained( | |
model_3n_id, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
attn_implementation="eager", | |
) | |
def check_file_size(file_path: str) -> bool: | |
if not os.path.exists(file_path): | |
raise ValueError(f"File not found: {file_path}") | |
file_size = os.path.getsize(file_path) | |
if file_path.lower().endswith((".mp4", ".mov")): | |
if file_size > MAX_VIDEO_SIZE: | |
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB") | |
else: | |
if file_size > MAX_IMAGE_SIZE: | |
raise ValueError(f"Image file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB") | |
return True | |
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]: | |
# Check file size before processing | |
check_file_size(video_path) | |
frames: list[tuple[Image.Image, float]] = [] | |
capture = cv2.VideoCapture(video_path) | |
if not capture.isOpened(): | |
raise ValueError(f"Could not open video file: {video_path}") | |
fps = capture.get(cv2.CAP_PROP_FPS) | |
total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(total_frames // max_images, 1) | |
max_position = min(total_frames, max_images * frame_interval) | |
i = 0 | |
while i < max_position and len(frames) < max_images: | |
capture.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = capture.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
i += frame_interval | |
capture.release() | |
return frames | |
def process_video(video_path: str, max_images: int) -> list[dict]: | |
result_content = [] | |
frames = get_frames(video_path, max_images) | |
for frame in frames: | |
image, timestamp = frame | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: | |
image.save(temp_file.name) | |
result_content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
result_content.append({"type": "image", "url": temp_file.name}) | |
logger.debug( | |
f"Processed {len(frames)} frames from video {video_path} with frames {result_content}" | |
) | |
return result_content | |
def process_user_input(message: dict, max_images: int) -> list[dict]: | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}] | |
result_content = [{"type": "text", "text": message["text"]}] | |
for file_path in message["files"]: | |
try: | |
check_file_size(file_path) | |
except ValueError as e: | |
logger.error(f"File size check failed: {e}") | |
result_content.append({"type": "text", "text": f"Error: {str(e)}"}) | |
continue | |
if file_path.endswith((".mp4", ".mov")): | |
try: | |
result_content = [*result_content, *process_video(file_path, max_images)] | |
except Exception as e: | |
logger.error(f"Video processing failed: {e}") | |
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"}) | |
else: | |
result_content = [*result_content, {"type": "image", "url": file_path}] | |
return result_content | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
content_buffer = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if content_buffer: | |
messages.append({"role": "user", "content": content_buffer}) | |
content_buffer = [] | |
messages.append( | |
{ | |
"role": "assistant", | |
"content": [{"type": "text", "text": item["content"]}], | |
} | |
) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
content_buffer.append({"type": "text", "text": content}) | |
elif isinstance(content, tuple) and len(content) > 0: | |
file_path = content[0] | |
if file_path.endswith((".mp4", ".mov")): | |
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"}) | |
else: | |
content_buffer.append({"type": "image", "url": file_path}) | |
if content_buffer: | |
messages.append({"role": "user", "content": content_buffer}) | |
return messages | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str, | |
model_choice: str, | |
max_new_tokens: int, | |
max_images: int, | |
temperature: float, | |
top_p: float, | |
top_k: int, | |
repetition_penalty: float, | |
) -> Iterator[str]: | |
logger.debug( | |
f"\n message: {message} \n history: {history} \n system_prompt: {system_prompt} \n " | |
f"model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}" | |
) | |
selected_model = model_12 if model_choice == "Gemma 3 12B" else model_3n | |
messages = [] | |
if system_prompt: | |
messages.append( | |
{"role": "system", "content": [{"type": "text", "text": system_prompt}]} | |
) | |
messages.extend(process_history(history)) | |
messages.append( | |
{"role": "user", "content": process_user_input(message, max_images)} | |
) | |
inputs = input_processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=selected_model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer( | |
input_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0 | |
) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
) | |
t = Thread(target=selected_model.generate, kwargs=generate_kwargs) | |
t.start() | |
output = "" | |
for delta in streamer: | |
output += delta | |
yield output | |
demo = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[".mp4", ".jpg", ".png"], file_count="multiple", autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
gr.Textbox(label="System Prompt", value="You are a helpful assistant."), | |
gr.Dropdown( | |
label="Model", | |
choices=["Gemma 3 12B", "Gemma 3n E4B"], | |
value="Gemma 3 12B" | |
), | |
gr.Slider( | |
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700 | |
), | |
gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2), | |
gr.Slider( | |
label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7 | |
), | |
gr.Slider( | |
label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9 | |
), | |
gr.Slider( | |
label="Top K", minimum=1, maximum=100, step=1, value=50 | |
), | |
gr.Slider( | |
label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1 | |
) | |
], | |
stop_btn=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |