gemma-demo / app.py
AC2513's picture
added media size limit
3a8e58d
import torch
torch._dynamo.config.disable = True
from collections.abc import Iterator
from transformers import (
Gemma3ForConditionalGeneration,
TextIteratorStreamer,
Gemma3Processor,
Gemma3nForConditionalGeneration,
)
import spaces
import tempfile
from threading import Thread
import gradio as gr
import os
from dotenv import load_dotenv, find_dotenv
import cv2
from loguru import logger
from PIL import Image
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
model_12_id = os.getenv("MODEL_12_ID", "google/gemma-3-12b-it")
model_3n_id = os.getenv("MODEL_3N_ID", "google/gemma-3n-E4B-it")
MAX_VIDEO_SIZE = 100 * 1024 * 1024 # 100 MB
MAX_IMAGE_SIZE = 10 * 1024 * 1024 # 10 MB
input_processor = Gemma3Processor.from_pretrained(model_12_id)
model_12 = Gemma3ForConditionalGeneration.from_pretrained(
model_12_id,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager",
)
model_3n = Gemma3nForConditionalGeneration.from_pretrained(
model_3n_id,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="eager",
)
def check_file_size(file_path: str) -> bool:
if not os.path.exists(file_path):
raise ValueError(f"File not found: {file_path}")
file_size = os.path.getsize(file_path)
if file_path.lower().endswith((".mp4", ".mov")):
if file_size > MAX_VIDEO_SIZE:
raise ValueError(f"Video file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_VIDEO_SIZE / (1024*1024):.0f}MB")
else:
if file_size > MAX_IMAGE_SIZE:
raise ValueError(f"Image file too large: {file_size / (1024*1024):.1f}MB. Maximum allowed: {MAX_IMAGE_SIZE / (1024*1024):.0f}MB")
return True
def get_frames(video_path: str, max_images: int) -> list[tuple[Image.Image, float]]:
# Check file size before processing
check_file_size(video_path)
frames: list[tuple[Image.Image, float]] = []
capture = cv2.VideoCapture(video_path)
if not capture.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
fps = capture.get(cv2.CAP_PROP_FPS)
total_frames = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = max(total_frames // max_images, 1)
max_position = min(total_frames, max_images * frame_interval)
i = 0
while i < max_position and len(frames) < max_images:
capture.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = capture.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
i += frame_interval
capture.release()
return frames
def process_video(video_path: str, max_images: int) -> list[dict]:
result_content = []
frames = get_frames(video_path, max_images)
for frame in frames:
image, timestamp = frame
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
image.save(temp_file.name)
result_content.append({"type": "text", "text": f"Frame {timestamp}:"})
result_content.append({"type": "image", "url": temp_file.name})
logger.debug(
f"Processed {len(frames)} frames from video {video_path} with frames {result_content}"
)
return result_content
def process_user_input(message: dict, max_images: int) -> list[dict]:
if not message["files"]:
return [{"type": "text", "text": message["text"]}]
result_content = [{"type": "text", "text": message["text"]}]
for file_path in message["files"]:
try:
check_file_size(file_path)
except ValueError as e:
logger.error(f"File size check failed: {e}")
result_content.append({"type": "text", "text": f"Error: {str(e)}"})
continue
if file_path.endswith((".mp4", ".mov")):
try:
result_content = [*result_content, *process_video(file_path, max_images)]
except Exception as e:
logger.error(f"Video processing failed: {e}")
result_content.append({"type": "text", "text": f"Error processing video: {str(e)}"})
else:
result_content = [*result_content, {"type": "image", "url": file_path}]
return result_content
def process_history(history: list[dict]) -> list[dict]:
messages = []
content_buffer = []
for item in history:
if item["role"] == "assistant":
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
content_buffer = []
messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": item["content"]}],
}
)
else:
content = item["content"]
if isinstance(content, str):
content_buffer.append({"type": "text", "text": content})
elif isinstance(content, tuple) and len(content) > 0:
file_path = content[0]
if file_path.endswith((".mp4", ".mov")):
content_buffer.append({"type": "text", "text": "[Video uploaded previously]"})
else:
content_buffer.append({"type": "image", "url": file_path})
if content_buffer:
messages.append({"role": "user", "content": content_buffer})
return messages
@spaces.GPU(duration=120)
def run(
message: dict,
history: list[dict],
system_prompt: str,
model_choice: str,
max_new_tokens: int,
max_images: int,
temperature: float,
top_p: float,
top_k: int,
repetition_penalty: float,
) -> Iterator[str]:
logger.debug(
f"\n message: {message} \n history: {history} \n system_prompt: {system_prompt} \n "
f"model_choice: {model_choice} \n max_new_tokens: {max_new_tokens} \n max_images: {max_images}"
)
selected_model = model_12 if model_choice == "Gemma 3 12B" else model_3n
messages = []
if system_prompt:
messages.append(
{"role": "system", "content": [{"type": "text", "text": system_prompt}]}
)
messages.extend(process_history(history))
messages.append(
{"role": "user", "content": process_user_input(message, max_images)}
)
inputs = input_processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device=selected_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
input_processor, skip_prompt=True, skip_special_tokens=True, timeout=60.0
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=True,
)
t = Thread(target=selected_model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for delta in streamer:
output += delta
yield output
demo = gr.ChatInterface(
fn=run,
type="messages",
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
textbox=gr.MultimodalTextbox(
file_types=[".mp4", ".jpg", ".png"], file_count="multiple", autofocus=True
),
multimodal=True,
additional_inputs=[
gr.Textbox(label="System Prompt", value="You are a helpful assistant."),
gr.Dropdown(
label="Model",
choices=["Gemma 3 12B", "Gemma 3n E4B"],
value="Gemma 3 12B"
),
gr.Slider(
label="Max New Tokens", minimum=100, maximum=2000, step=10, value=700
),
gr.Slider(label="Max Images", minimum=1, maximum=4, step=1, value=2),
gr.Slider(
label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7
),
gr.Slider(
label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.9
),
gr.Slider(
label="Top K", minimum=1, maximum=100, step=1, value=50
),
gr.Slider(
label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1
)
],
stop_btn=False,
)
if __name__ == "__main__":
demo.launch()