File size: 37,421 Bytes
e1cced0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
# src/knowledge_graph.py

import networkx as nx
from pyvis.network import Network
import json
from typing import Dict, List, Any, Optional, Set, Tuple
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from collections import defaultdict

class KnowledgeGraph:
    """

    Handles the construction and visualization of knowledge graphs

    based on the ontology data.

    """
    
    def __init__(self, ontology_manager=None):
        """

        Initialize the knowledge graph handler.

        

        Args:

            ontology_manager: Optional ontology manager instance

        """
        self.ontology_manager = ontology_manager
        self.graph = None
        
        if ontology_manager:
            self.graph = ontology_manager.graph
    
    def build_visualization_graph(

        self, 

        include_classes: bool = True,

        include_instances: bool = True,

        central_entity: Optional[str] = None,

        max_distance: int = 2,

        include_properties: bool = False

    ) -> nx.Graph:
        """

        Build a simplified graph for visualization purposes.

        

        Args:

            include_classes: Whether to include class nodes

            include_instances: Whether to include instance nodes

            central_entity: Optional central entity to focus the graph on

            max_distance: Maximum distance from central entity to include

            include_properties: Whether to include property nodes

            

        Returns:

            A NetworkX graph suitable for visualization

        """
        if not self.graph:
            return nx.Graph()
        
        # Create an undirected graph for visualization
        viz_graph = nx.Graph()
        
        # If we have a central entity, extract a subgraph around it
        if central_entity and central_entity in self.graph:
            # Get nodes within max_distance of central_entity
            nodes_to_include = set([central_entity])
            current_distance = 0
            current_layer = set([central_entity])
            
            while current_distance < max_distance:
                next_layer = set()
                for node in current_layer:
                    # Get neighbors
                    neighbors = set(self.graph.successors(node)).union(set(self.graph.predecessors(node)))
                    next_layer.update(neighbors)
                
                nodes_to_include.update(next_layer)
                current_layer = next_layer
                current_distance += 1
            
            # Create subgraph
            subgraph = self.graph.subgraph(nodes_to_include)
        else:
            subgraph = self.graph
        
        # Add nodes to the visualization graph
        for node, data in subgraph.nodes(data=True):
            node_type = data.get("type")
            
            # Skip nodes based on configuration
            if node_type == "class" and not include_classes:
                continue
            if node_type == "instance" and not include_instances:
                continue
            
            # Get readable name for the node
            if node_type == "instance" and "properties" in data:
                label = data["properties"].get("name", node)
            else:
                label = node
            
            # Set node attributes for visualization
            viz_attrs = {
                "id": node,
                "label": label,
                "title": self._get_node_tooltip(node, data),
                "group": data.get("class_type", node_type),
                "shape": "dot" if node_type == "instance" else "diamond"
            }
            
            # Highlight central entity if specified
            if central_entity and node == central_entity:
                viz_attrs["color"] = "#ff7f0e"  # Orange for central entity
                viz_attrs["size"] = 25  # Larger size for central entity
            
            # Add the node
            viz_graph.add_node(node, **viz_attrs)
            
            # Add property nodes if configured
            if include_properties and node_type == "instance" and "properties" in data:
                for prop_name, prop_value in data["properties"].items():
                    # Create a property node
                    prop_node_id = f"{node}_{prop_name}"
                    prop_value_str = str(prop_value)
                    if len(prop_value_str) > 20:
                        prop_value_str = prop_value_str[:17] + "..."
                    
                    viz_graph.add_node(
                        prop_node_id, 
                        id=prop_node_id,
                        label=f"{prop_name}: {prop_value_str}",
                        title=f"{prop_name}: {prop_value}",
                        group="property",
                        shape="ellipse",
                        size=5
                    )
                    
                    # Connect instance to property
                    viz_graph.add_edge(node, prop_node_id, label="has_property", dashes=True)
        
        # Add edges to the visualization graph
        for source, target, data in subgraph.edges(data=True):
            # Only include edges between nodes that are in the viz_graph
            if source in viz_graph and target in viz_graph:
                # Skip property-related edges if we're manually creating them
                if include_properties and (
                    source.startswith(target + "_") or target.startswith(source + "_")
                ):
                    continue
                
                # Set edge attributes
                edge_type = data.get("type", "unknown")
                
                # Don't show subClassOf and instanceOf relationships if not explicitly requested
                if edge_type in ["subClassOf", "instanceOf"] and not include_classes:
                    continue
                
                viz_graph.add_edge(source, target, label=edge_type, title=edge_type)
        
        return viz_graph
    
    def _get_node_tooltip(self, node_id: str, data: Dict) -> str:
        """Generate a tooltip for a node."""
        tooltip = f"<strong>ID:</strong> {node_id}<br>"
        
        node_type = data.get("type")
        if node_type:
            tooltip += f"<strong>Type:</strong> {node_type}<br>"
        
        if node_type == "instance":
            tooltip += f"<strong>Class:</strong> {data.get('class_type', 'unknown')}<br>"
            
            # Add properties
            if "properties" in data:
                tooltip += "<strong>Properties:</strong><br>"
                for key, value in data["properties"].items():
                    tooltip += f"- {key}: {value}<br>"
        
        elif node_type == "class":
            tooltip += f"<strong>Description:</strong> {data.get('description', '')}<br>"
            
            # Add properties if available
            if "properties" in data:
                tooltip += "<strong>Properties:</strong> " + ", ".join(data["properties"]) + "<br>"
        
        return tooltip
    
    def generate_html_visualization(

        self, 

        include_classes: bool = True,

        include_instances: bool = True,

        central_entity: Optional[str] = None,

        max_distance: int = 2,

        include_properties: bool = False,

        height: str = "600px",

        width: str = "100%",

        bgcolor: str = "#ffffff",

        font_color: str = "#000000",

        layout_algorithm: str = "force-directed"

    ) -> str:
        """

        Generate an HTML visualization of the knowledge graph.

        

        Args:

            include_classes: Whether to include class nodes

            include_instances: Whether to include instance nodes

            central_entity: Optional central entity to focus the graph on

            max_distance: Maximum distance from central entity to include

            include_properties: Whether to include property nodes

            height: Height of the visualization

            width: Width of the visualization

            bgcolor: Background color

            font_color: Font color

            layout_algorithm: Algorithm for layout ('force-directed', 'hierarchical', 'radial', 'circular')

            

        Returns:

            HTML string containing the visualization

        """
        # Build the visualization graph
        viz_graph = self.build_visualization_graph(
            include_classes=include_classes,
            include_instances=include_instances,
            central_entity=central_entity,
            max_distance=max_distance,
            include_properties=include_properties
        )
        
        # Create a PyVis network
        net = Network(height=height, width=width, bgcolor=bgcolor, font_color=font_color, directed=True)
        
        # Configure physics based on the selected layout algorithm
        if layout_algorithm == "force-directed":
            physics_options = {
                "enabled": True,
                "solver": "forceAtlas2Based",
                "forceAtlas2Based": {
                    "gravitationalConstant": -50,
                    "centralGravity": 0.01,
                    "springLength": 100,
                    "springConstant": 0.08
                },
                "stabilization": {
                    "enabled": True,
                    "iterations": 100
                }
            }
        elif layout_algorithm == "hierarchical":
            physics_options = {
                "enabled": True,
                "hierarchicalRepulsion": {
                    "centralGravity": 0.0,
                    "springLength": 100,
                    "springConstant": 0.01,
                    "nodeDistance": 120
                },
                "solver": "hierarchicalRepulsion",
                "stabilization": {
                    "enabled": True,
                    "iterations": 100
                }
            }
            
            # Set hierarchical layout
            net.set_options("""

                var options = {

                    "layout": {

                        "hierarchical": {

                            "enabled": true,

                            "direction": "UD",

                            "sortMethod": "directed",

                            "nodeSpacing": 150,

                            "treeSpacing": 200

                        }

                    }

                }

            """)
        elif layout_algorithm == "radial":
            physics_options = {
                "enabled": True,
                "solver": "repulsion",
                "repulsion": {
                    "nodeDistance": 120,
                    "centralGravity": 0.2,
                    "springLength": 200,
                    "springConstant": 0.05
                },
                "stabilization": {
                    "enabled": True,
                    "iterations": 100
                }
            }
        elif layout_algorithm == "circular":
            physics_options = {
                "enabled": False
            }
            
            # Compute circular layout and set fixed positions
            pos = nx.circular_layout(viz_graph)
            for node_id, coords in pos.items():
                if node_id in viz_graph.nodes:
                    x, y = coords
                    viz_graph.nodes[node_id]['x'] = float(x) * 500
                    viz_graph.nodes[node_id]['y'] = float(y) * 500
                    viz_graph.nodes[node_id]['physics'] = False
        
        # Configure other options
        options = {
            "nodes": {
                "font": {"size": 12},
                "scaling": {"min": 10, "max": 30}
            },
            "edges": {
                "color": {"inherit": True},
                "smooth": {"enabled": True, "type": "dynamic"},
                "arrows": {"to": {"enabled": True, "scaleFactor": 0.5}},
                "font": {"size": 10, "align": "middle"}
            },
            "physics": physics_options,
            "interaction": {
                "hover": True,
                "navigationButtons": True,
                "keyboard": True,
                "tooltipDelay": 100
            }
        }
        
        # Set options and create the network
        net.options = options
        net.from_nx(viz_graph)
        
        # Add custom CSS for better visualization
        custom_css = """

        <style>

          .vis-network {

            border: 1px solid #ddd;

            border-radius: 5px;

          }

          .vis-tooltip {

            position: absolute;

            background-color: #f5f5f5;

            border: 1px solid #ccc;

            border-radius: 4px;

            padding: 10px;

            font-family: Arial, sans-serif;

            font-size: 12px;

            color: #333;

            max-width: 300px;

            z-index: 9999;

            box-shadow: 0 2px 4px rgba(0,0,0,0.1);

          }

        </style>

        """
        
        # Generate the HTML and add custom CSS
        html = net.generate_html()
        html = html.replace("<style>", custom_css + "<style>")
        
        # Add legend
        legend_html = self._generate_legend_html(viz_graph)
        html = html.replace("</body>", legend_html + "</body>")
        
        return html
    
    def _generate_legend_html(self, graph: nx.Graph) -> str:
        """Generate a legend for the visualization."""
        # Collect unique groups
        groups = set()
        for _, attrs in graph.nodes(data=True):
            if "group" in attrs:
                groups.add(attrs["group"])
        
        # Generate HTML for legend
        legend_html = """

        <div id="graph-legend" style="position: absolute; top: 10px; right: 10px; background-color: rgba(255,255,255,0.8); 

                                    padding: 10px; border-radius: 5px; border: 1px solid #ddd; max-width: 200px;">

            <strong>Legend:</strong>

            <ul style="list-style-type: none; padding-left: 0; margin-top: 5px;">

        """
        
        # Add items for each group
        for group in sorted(groups):
            color = "#97c2fc"  # Default color
            if group == "property":
                color = "#ffcc99"
            elif group == "class":
                color = "#a1d3a2"
            
            legend_html += f"""

                <li style="margin-bottom: 5px;">

                    <span style="display: inline-block; width: 12px; height: 12px; border-radius: 50%; 

                                background-color: {color}; margin-right: 5px;"></span>

                    {group}

                </li>

            """
        
        # Close the legend container
        legend_html += """

            </ul>

            <div style="font-size: 10px; margin-top: 5px; color: #666;">

                Double-click to zoom, drag to pan, scroll to zoom in/out

            </div>

        </div>

        """
        
        return legend_html
    
    def get_graph_statistics(self) -> Dict[str, Any]:
        """

        Calculate statistics about the knowledge graph.

        

        Returns:

            A dictionary containing graph statistics

        """
        if not self.graph:
            return {}
        
        # Count nodes by type
        class_count = 0
        instance_count = 0
        property_count = 0
        
        for _, data in self.graph.nodes(data=True):
            node_type = data.get("type")
            if node_type == "class":
                class_count += 1
            elif node_type == "instance":
                instance_count += 1
                if "properties" in data:
                    property_count += len(data["properties"])
        
        # Count edges by type
        relationship_counts = {}
        for _, _, data in self.graph.edges(data=True):
            rel_type = data.get("type", "unknown")
            relationship_counts[rel_type] = relationship_counts.get(rel_type, 0) + 1
        
        # Calculate graph metrics
        try:
            # Some metrics only work on undirected graphs
            undirected = nx.Graph(self.graph)
            avg_degree = sum(dict(undirected.degree()).values()) / undirected.number_of_nodes()
            
            # Only calculate these if the graph is connected
            if nx.is_connected(undirected):
                avg_path_length = nx.average_shortest_path_length(undirected)
                diameter = nx.diameter(undirected)
            else:
                # Get the largest connected component
                largest_cc = max(nx.connected_components(undirected), key=len)
                largest_cc_subgraph = undirected.subgraph(largest_cc)
                
                avg_path_length = nx.average_shortest_path_length(largest_cc_subgraph)
                diameter = nx.diameter(largest_cc_subgraph)
                
            # Calculate density
            density = nx.density(self.graph)
            
            # Calculate clustering coefficient
            clustering = nx.average_clustering(undirected)
        except:
            avg_degree = 0
            avg_path_length = 0
            diameter = 0
            density = 0
            clustering = 0
        
        # Count different entity types
        class_counts = defaultdict(int)
        for _, data in self.graph.nodes(data=True):
            if data.get("type") == "instance":
                class_type = data.get("class_type", "unknown")
                class_counts[class_type] += 1
        
        # Get nodes with highest centrality
        try:
            betweenness = nx.betweenness_centrality(self.graph)
            degree = nx.degree_centrality(self.graph)
            
            # Get top 5 nodes by betweenness centrality
            top_betweenness = sorted(betweenness.items(), key=lambda x: x[1], reverse=True)[:5]
            top_degree = sorted(degree.items(), key=lambda x: x[1], reverse=True)[:5]
            
            central_nodes = {
                "betweenness": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_betweenness],
                "degree": [{"node": node, "centrality": round(cent, 3)} for node, cent in top_degree]
            }
        except:
            central_nodes = {}
        
        return {
            "node_count": self.graph.number_of_nodes(),
            "edge_count": self.graph.number_of_edges(),
            "class_count": class_count,
            "instance_count": instance_count,
            "property_count": property_count,
            "relationship_counts": relationship_counts,
            "class_instance_counts": dict(class_counts),
            "average_degree": avg_degree,
            "average_path_length": avg_path_length,
            "diameter": diameter,
            "density": density,
            "clustering_coefficient": clustering,
            "central_nodes": central_nodes
        }
    
    def find_paths_between_entities(

        self, 

        source_entity: str, 

        target_entity: str, 

        max_length: int = 3

    ) -> List[List[Dict]]:
        """

        Find all paths between two entities up to a maximum length.

        

        Args:

            source_entity: Starting entity ID

            target_entity: Target entity ID

            max_length: Maximum path length

            

        Returns:

            A list of paths, where each path is a list of edge dictionaries

        """
        if not self.graph or source_entity not in self.graph or target_entity not in self.graph:
            return []
        
        # Use networkx to find simple paths
        try:
            simple_paths = list(nx.all_simple_paths(
                self.graph, source_entity, target_entity, cutoff=max_length
            ))
        except (nx.NetworkXNoPath, nx.NodeNotFound):
            return []
        
        # Convert paths to edge sequences
        paths = []
        for path in simple_paths:
            edge_sequence = []
            for i in range(len(path) - 1):
                source = path[i]
                target = path[i + 1]
                
                # There may be multiple edges between nodes
                edges = self.graph.get_edge_data(source, target)
                if edges:
                    for key, data in edges.items():
                        edge_sequence.append({
                            "source": source,
                            "target": target,
                            "type": data.get("type", "unknown")
                        })
            
            # Only include the path if it has meaningful relationships
            # Filter out paths that only contain structural relationships like subClassOf, instanceOf
            meaningful_relationships = [edge for edge in edge_sequence 
                                      if edge["type"] not in ["subClassOf", "instanceOf"]]
            
            if meaningful_relationships:
                paths.append(edge_sequence)
        
        # Sort paths by length (shorter paths first)
        paths.sort(key=len)
        
        return paths
    
    def get_entity_neighborhood(

        self, 

        entity_id: str, 

        max_distance: int = 1,

        include_classes: bool = True

    ) -> Dict[str, Any]:
        """

        Get the neighborhood of an entity.

        

        Args:

            entity_id: The central entity ID

            max_distance: Maximum distance from the central entity

            include_classes: Whether to include class relationships

            

        Returns:

            A dictionary containing the neighborhood information

        """
        if not self.graph or entity_id not in self.graph:
            return {}
        
        # Get nodes within max_distance of entity_id using BFS
        nodes_at_distance = {0: [entity_id]}
        visited = set([entity_id])
        
        for distance in range(1, max_distance + 1):
            nodes_at_distance[distance] = []
            
            for node in nodes_at_distance[distance - 1]:
                # Get neighbors
                neighbors = list(self.graph.successors(node)) + list(self.graph.predecessors(node))
                
                for neighbor in neighbors:
                    # Skip class nodes if not including classes
                    neighbor_data = self.graph.nodes.get(neighbor, {})
                    if not include_classes and neighbor_data.get("type") == "class":
                        continue
                    
                    if neighbor not in visited:
                        nodes_at_distance[distance].append(neighbor)
                        visited.add(neighbor)
        
        # Flatten the nodes
        all_nodes = [node for nodes in nodes_at_distance.values() for node in nodes]
        
        # Extract the subgraph
        subgraph = self.graph.subgraph(all_nodes)
        
        # Build neighbor information
        neighbors = []
        for node in all_nodes:
            if node == entity_id:
                continue
                
            node_data = self.graph.nodes[node]
            
            # Determine the relations to central entity
            relations = []
            
            # Check direct relationships
            # Check if central entity is source
            edges_out = self.graph.get_edge_data(entity_id, node)
            if edges_out:
                for key, data in edges_out.items():
                    rel_type = data.get("type", "unknown")
                    
                    # Skip structural relationships if not including classes
                    if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
                        continue
                    
                    relations.append({
                        "type": rel_type,
                        "direction": "outgoing"
                    })
            
            # Check if central entity is target
            edges_in = self.graph.get_edge_data(node, entity_id)
            if edges_in:
                for key, data in edges_in.items():
                    rel_type = data.get("type", "unknown")
                    
                    # Skip structural relationships if not including classes
                    if not include_classes and rel_type in ["subClassOf", "instanceOf"]:
                        continue
                    
                    relations.append({
                        "type": rel_type,
                        "direction": "incoming"
                    })
            
            # Also find paths through intermediate nodes (indirect relationships)
            if not relations:  # Only look for indirect if no direct relationships
                for path_length in range(2, max_distance + 1):
                    try:
                        # Find paths of exactly length path_length
                        paths = list(nx.all_simple_paths(
                            self.graph, entity_id, node, cutoff=path_length, min_edges=path_length
                        ))
                        
                        for path in paths:
                            if len(path) > 1:  # Path should have at least 2 nodes
                                intermediate_nodes = path[1:-1]  # Skip source and target
                                
                                # Format the path as a relation
                                path_relation = {
                                    "type": "indirect_connection",
                                    "direction": "outgoing",
                                    "path_length": len(path) - 1,
                                    "intermediates": intermediate_nodes
                                }
                                
                                relations.append(path_relation)
                                
                                # Only need one example of an indirect path
                                break
                    except (nx.NetworkXNoPath, nx.NodeNotFound):
                        pass
            
            # Only include neighbors with relations
            if relations:
                neighbors.append({
                    "id": node,
                    "type": node_data.get("type"),
                    "class_type": node_data.get("class_type"),
                    "properties": node_data.get("properties", {}),
                    "relations": relations,
                    "distance": next(dist for dist, nodes in nodes_at_distance.items() if node in nodes)
                })
        
        # Group neighbors by distance
        neighbors_by_distance = defaultdict(list)
        for neighbor in neighbors:
            neighbors_by_distance[neighbor["distance"]].append(neighbor)
        
        # Get central entity info
        central_data = self.graph.nodes[entity_id]
        
        return {
            "central_entity": {
                "id": entity_id,
                "type": central_data.get("type"),
                "class_type": central_data.get("class_type", ""),
                "properties": central_data.get("properties", {})
            },
            "neighbors": neighbors,
            "neighbors_by_distance": dict(neighbors_by_distance),
            "total_neighbors": len(neighbors)
        }
    
    def find_common_patterns(self) -> List[Dict[str, Any]]:
        """

        Find common patterns and structures in the knowledge graph.

        

        Returns:

            A list of pattern dictionaries

        """
        if not self.graph:
            return []
        
        patterns = []
        
        # Find common relationship patterns
        relationship_patterns = self._find_relationship_patterns()
        if relationship_patterns:
            patterns.extend(relationship_patterns)
        
        # Find hub entities (entities with many connections)
        hub_entities = self._find_hub_entities()
        if hub_entities:
            patterns.append({
                "type": "hub_entities",
                "description": "Entities with high connectivity serving as knowledge hubs",
                "entities": hub_entities
            })
        
        # Find common property patterns
        property_patterns = self._find_property_patterns()
        if property_patterns:
            patterns.extend(property_patterns)
        
        return patterns
    
    def _find_relationship_patterns(self) -> List[Dict[str, Any]]:
        """Find common relationship patterns in the graph."""
        # Count relationship triplets (source_type, relation, target_type)
        triplet_counts = defaultdict(int)
        
        for source, target, data in self.graph.edges(data=True):
            rel_type = data.get("type", "unknown")
            
            # Skip structural relationships
            if rel_type in ["subClassOf", "instanceOf"]:
                continue
            
            # Get node types
            source_data = self.graph.nodes[source]
            target_data = self.graph.nodes[target]
            
            source_type = (
                source_data.get("class_type")
                if source_data.get("type") == "instance"
                else source_data.get("type")
            )
            
            target_type = (
                target_data.get("class_type")
                if target_data.get("type") == "instance"
                else target_data.get("type")
            )
            
            if source_type and target_type:
                triplet = (source_type, rel_type, target_type)
                triplet_counts[triplet] += 1
        
        # Get patterns with significant frequency (more than 1 occurrence)
        patterns = []
        for triplet, count in triplet_counts.items():
            if count > 1:
                source_type, rel_type, target_type = triplet
                
                # Find examples of this pattern
                examples = []
                for source, target, data in self.graph.edges(data=True):
                    if len(examples) >= 3:  # Limit to 3 examples
                        break
                        
                    rel = data.get("type", "unknown")
                    if rel != rel_type:
                        continue
                    
                    source_data = self.graph.nodes[source]
                    target_data = self.graph.nodes[target]
                    
                    current_source_type = (
                        source_data.get("class_type")
                        if source_data.get("type") == "instance"
                        else source_data.get("type")
                    )
                    
                    current_target_type = (
                        target_data.get("class_type")
                        if target_data.get("type") == "instance"
                        else target_data.get("type")
                    )
                    
                    if current_source_type == source_type and current_target_type == target_type:
                        # Get readable names if available
                        source_name = source
                        if source_data.get("type") == "instance" and "properties" in source_data:
                            properties = source_data["properties"]
                            if "name" in properties:
                                source_name = properties["name"]
                        
                        target_name = target
                        if target_data.get("type") == "instance" and "properties" in target_data:
                            properties = target_data["properties"]
                            if "name" in properties:
                                target_name = properties["name"]
                        
                        examples.append({
                            "source": source,
                            "source_name": source_name,
                            "target": target,
                            "target_name": target_name,
                            "relationship": rel_type
                        })
                
                patterns.append({
                    "type": "relationship_pattern",
                    "description": f"{source_type} {rel_type} {target_type}",
                    "source_type": source_type,
                    "relationship": rel_type,
                    "target_type": target_type,
                    "count": count,
                    "examples": examples
                })
        
        # Sort by frequency
        patterns.sort(key=lambda x: x["count"], reverse=True)
        
        return patterns
    
    def _find_hub_entities(self) -> List[Dict[str, Any]]:
        """Find entities that serve as hubs (many connections)."""
        # Calculate degree centrality
        degree = nx.degree_centrality(self.graph)
        
        # Get top entities by degree
        top_entities = sorted(degree.items(), key=lambda x: x[1], reverse=True)[:10]
        
        hub_entities = []
        for node, centrality in top_entities:
            node_data = self.graph.nodes[node]
            node_type = node_data.get("type")
            
            # Only consider instance nodes
            if node_type == "instance":
                # Get class type
                class_type = node_data.get("class_type", "unknown")
                
                # Get name if available
                name = node
                if "properties" in node_data and "name" in node_data["properties"]:
                    name = node_data["properties"]["name"]
                
                # Count relationships by type
                relationships = defaultdict(int)
                for _, _, data in self.graph.edges(data=True, nbunch=[node]):
                    rel_type = data.get("type", "unknown")
                    if rel_type not in ["subClassOf", "instanceOf"]:
                        relationships[rel_type] += 1
                
                hub_entities.append({
                    "id": node,
                    "name": name,
                    "type": class_type,
                    "centrality": centrality,
                    "relationships": dict(relationships),
                    "total_connections": sum(relationships.values())
                })
        
        # Sort by total connections
        hub_entities.sort(key=lambda x: x["total_connections"], reverse=True)
        
        return hub_entities
    
    def _find_property_patterns(self) -> List[Dict[str, Any]]:
        """Find common property patterns in instance data."""
        # Track properties by class type
        properties_by_class = defaultdict(lambda: defaultdict(int))
        
        for node, data in self.graph.nodes(data=True):
            if data.get("type") == "instance":
                class_type = data.get("class_type", "unknown")
                
                if "properties" in data:
                    for prop in data["properties"].keys():
                        properties_by_class[class_type][prop] += 1
        
        # Find common property combinations
        patterns = []
        for class_type, props in properties_by_class.items():
            # Sort properties by frequency
            sorted_props = sorted(props.items(), key=lambda x: x[1], reverse=True)
            
            # Only include classes with multiple instances
            class_instances = sum(1 for _, data in self.graph.nodes(data=True)
                                if data.get("type") == "instance" and data.get("class_type") == class_type)
            
            if class_instances > 1:
                common_props = [prop for prop, count in sorted_props if count > 1]
                
                if common_props:
                    patterns.append({
                        "type": "property_pattern",
                        "description": f"Common properties for {class_type} instances",
                        "class_type": class_type,
                        "instance_count": class_instances,
                        "common_properties": common_props,
                        "property_frequencies": {prop: count for prop, count in sorted_props}
                    })
        
        return patterns