Spaces:
Running
Running
File size: 58,875 Bytes
e1cced0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 |
# src/visualization.py
import streamlit as st
import json
import networkx as nx
import pandas as pd
from typing import Dict, List, Any, Optional, Set, Tuple
import plotly.graph_objects as go
import plotly.express as px
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
from collections import defaultdict
import math
def render_html_in_streamlit(html_content: str):
"""Display HTML content in Streamlit using an iframe."""
import base64
# Encode the HTML content
encoded_html = base64.b64encode(html_content.encode()).decode()
# Create an iframe with the data URL
iframe_html = f"""
<iframe
srcdoc="{encoded_html}"
width="100%"
height="600px"
frameborder="0"
allowfullscreen>
</iframe>
"""
# Display the iframe
st.markdown(iframe_html, unsafe_allow_html=True)
def display_ontology_stats(ontology_manager):
"""Display statistics and visualizations about the ontology."""
st.subheader("📊 Ontology Structure and Statistics")
# Get basic stats
classes = ontology_manager.get_classes()
class_hierarchy = ontology_manager.get_class_hierarchy()
# Count instances per class
class_counts = []
for class_name in classes:
instance_count = len(ontology_manager.get_instances_of_class(class_name, include_subclasses=False))
class_counts.append({
"Class": class_name,
"Instances": instance_count
})
# Display summary metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Classes", len(classes))
# Count total instances
total_instances = sum(item["Instances"] for item in class_counts)
with col2:
st.metric("Total Instances", total_instances)
# Count relationships
relationship_count = len(ontology_manager.ontology_data.get("relationships", []))
with col3:
st.metric("Relationship Types", relationship_count)
# Visualize class hierarchy
st.markdown("### Class Hierarchy")
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["Tree View", "Class Statistics", "Hierarchy Graph"])
with tab1:
# Create a collapsible tree view of class hierarchy
display_class_hierarchy_tree(ontology_manager, class_hierarchy)
with tab2:
# Display class stats and distribution
if class_counts:
# Filter to only show classes with instances
non_empty_classes = [item for item in class_counts if item["Instances"] > 0]
if non_empty_classes:
df = pd.DataFrame(non_empty_classes)
df = df.sort_values("Instances", ascending=False)
# Create horizontal bar chart
fig = px.bar(df,
x="Instances",
y="Class",
orientation='h',
title="Instances per Class",
color="Instances",
color_continuous_scale="viridis")
fig.update_layout(yaxis={'categoryorder':'total ascending'})
st.plotly_chart(fig, use_container_width=True)
else:
st.info("No classes with instances found.")
# Show distribution of classes by inheritance depth
display_class_depth_distribution(ontology_manager)
with tab3:
# Display class hierarchy as a graph
display_class_hierarchy_graph(ontology_manager)
# Relationship statistics
st.markdown("### Relationship Analysis")
# Get relationship usage statistics
relationship_usage = analyze_relationship_usage(ontology_manager)
# Display relationship usage in a table and chart
if relationship_usage:
tab1, tab2 = st.tabs(["Usage Statistics", "Domain/Range Distribution"])
with tab1:
# Create DataFrame for the table
df = pd.DataFrame(relationship_usage)
df = df.sort_values("Usage Count", ascending=False)
# Show table
st.dataframe(df)
# Create bar chart for relationship usage
fig = px.bar(df,
x="Relationship",
y="Usage Count",
title="Relationship Usage Frequency",
color="Usage Count",
color_continuous_scale="blues")
st.plotly_chart(fig, use_container_width=True)
with tab2:
# Display domain-range distribution
display_domain_range_distribution(ontology_manager)
def display_class_hierarchy_tree(ontology_manager, class_hierarchy):
"""Display class hierarchy as an interactive tree."""
# Find root classes (those that aren't subclasses of anything else)
all_subclasses = set()
for subclasses in class_hierarchy.values():
all_subclasses.update(subclasses)
root_classes = [cls for cls in ontology_manager.get_classes() if cls not in all_subclasses]
# Create a recursive function to display the hierarchy
def display_subclasses(class_name, indent=0):
# Get class info
class_info = ontology_manager.ontology_data["classes"].get(class_name, {})
description = class_info.get("description", "")
instance_count = len(ontology_manager.get_instances_of_class(class_name, include_subclasses=False))
# Display class with expander for subclasses
if indent == 0:
# Root level classes are always expanded
with st.expander(f"📁 {class_name} ({instance_count} instances)", expanded=True):
st.markdown(f"**Description:** {description}")
# Show properties if any
properties = class_info.get("properties", [])
if properties:
st.markdown("**Properties:**")
st.markdown(", ".join(properties))
# Display subclasses
subclasses = class_hierarchy.get(class_name, [])
if subclasses:
st.markdown("**Subclasses:**")
for subclass in sorted(subclasses):
display_subclasses(subclass, indent + 1)
else:
st.markdown("*No subclasses*")
else:
# Nested classes use indentation and only show direct instances
if instance_count > 0:
class_label = f"📁 {class_name} ({instance_count} instances)"
else:
class_label = f"📁 {class_name}"
with st.expander(class_label, expanded=False):
st.markdown(f"**Description:** {description}")
# Show properties if any
properties = class_info.get("properties", [])
if properties:
st.markdown("**Properties:**")
st.markdown(", ".join(properties))
# Display subclasses
subclasses = class_hierarchy.get(class_name, [])
if subclasses:
st.markdown("**Subclasses:**")
for subclass in sorted(subclasses):
display_subclasses(subclass, indent + 1)
else:
st.markdown("*No subclasses*")
# Display each root class
for root_class in sorted(root_classes):
display_subclasses(root_class)
def get_class_depths(ontology_manager) -> Dict[str, int]:
"""Calculate the inheritance depth of each class."""
depths = {}
class_data = ontology_manager.ontology_data["classes"]
def get_depth(class_name):
# If we've already calculated the depth, return it
if class_name in depths:
return depths[class_name]
# Get the class data
cls = class_data.get(class_name, {})
# If no parent, depth is 0
if "subClassOf" not in cls:
depths[class_name] = 0
return 0
# Otherwise, depth is 1 + parent's depth
parent = cls["subClassOf"]
parent_depth = get_depth(parent)
depths[class_name] = parent_depth + 1
return depths[class_name]
# Calculate depths for all classes
for class_name in class_data:
get_depth(class_name)
return depths
def display_class_depth_distribution(ontology_manager):
"""Display distribution of classes by inheritance depth."""
depths = get_class_depths(ontology_manager)
# Count classes at each depth
depth_counts = defaultdict(int)
for _, depth in depths.items():
depth_counts[depth] += 1
# Create dataframe
df = pd.DataFrame([
{"Depth": depth, "Count": count}
for depth, count in depth_counts.items()
])
if not df.empty:
df = df.sort_values("Depth")
# Create bar chart
fig = px.bar(df,
x="Depth",
y="Count",
title="Class Distribution by Inheritance Depth",
labels={"Depth": "Inheritance Depth", "Count": "Number of Classes"},
color="Count",
text="Count")
fig.update_traces(texttemplate='%{text}', textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
st.plotly_chart(fig, use_container_width=True)
def display_class_hierarchy_graph(ontology_manager):
"""Display class hierarchy as a directed graph."""
# Create a directed graph
G = nx.DiGraph()
# Add nodes for each class
for class_name, class_info in ontology_manager.ontology_data["classes"].items():
# Count direct instances
instance_count = len(ontology_manager.get_instances_of_class(class_name, include_subclasses=False))
# Add node with attributes
G.add_node(class_name,
type="class",
description=class_info.get("description", ""),
instance_count=instance_count)
# Add edge for subclass relationship
if "subClassOf" in class_info:
parent = class_info["subClassOf"]
G.add_edge(parent, class_name, relationship="subClassOf")
# Create a Plotly graph visualization
# Calculate node positions using a hierarchical layout
pos = nx.nx_agraph.graphviz_layout(G, prog="dot")
# Convert positions to lists for Plotly
node_x = []
node_y = []
node_text = []
node_size = []
node_color = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
# Get node info for hover text
description = G.nodes[node].get("description", "")
instance_count = G.nodes[node].get("instance_count", 0)
# Prepare hover text
hover_text = f"Class: {node}<br>Description: {description}<br>Instances: {instance_count}"
node_text.append(hover_text)
# Size nodes by instance count (with a minimum size)
size = 10 + (instance_count * 2)
size = min(40, max(15, size)) # Limit size range
node_size.append(size)
# Color nodes by depth
depth = get_class_depths(ontology_manager).get(node, 0)
# Use a color scale from light to dark blue
node_color.append(depth)
# Create edge traces
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
# Add a curved line with multiple points
edge_x.append(x0)
edge_x.append(x1)
edge_x.append(None) # Add None to create a break between edges
edge_y.append(y0)
edge_y.append(y1)
edge_y.append(None)
# Create node trace
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=[node for node in G.nodes()],
textposition="bottom center",
hoverinfo='text',
hovertext=node_text,
marker=dict(
showscale=True,
colorscale='Blues',
color=node_color,
size=node_size,
line=dict(width=2, color='DarkSlateGrey'),
colorbar=dict(
title="Depth",
thickness=15,
tickvals=[0, max(node_color)],
ticktext=["Root", f"Depth {max(node_color)}"]
)
)
)
# Create edge trace
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
# Create figure
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
title="Class Hierarchy Graph",
title_x=0.5
))
# Display the figure
st.plotly_chart(fig, use_container_width=True)
def analyze_relationship_usage(ontology_manager) -> List[Dict]:
"""Analyze how relationships are used in the ontology."""
relationship_data = ontology_manager.ontology_data.get("relationships", [])
instances = ontology_manager.ontology_data.get("instances", [])
# Initialize counters
usage_counts = defaultdict(int)
# Count relationship usage in instances
for instance in instances:
for rel in instance.get("relationships", []):
usage_counts[rel["type"]] += 1
# Prepare results
results = []
for rel in relationship_data:
rel_name = rel["name"]
domain = rel["domain"]
range_class = rel["range"]
cardinality = rel.get("cardinality", "many-to-many")
count = usage_counts.get(rel_name, 0)
results.append({
"Relationship": rel_name,
"Domain": domain,
"Range": range_class,
"Cardinality": cardinality,
"Usage Count": count
})
return results
def display_domain_range_distribution(ontology_manager):
"""Display domain and range distribution for relationships."""
relationship_data = ontology_manager.ontology_data.get("relationships", [])
# Count domains and ranges
domain_counts = defaultdict(int)
range_counts = defaultdict(int)
for rel in relationship_data:
domain_counts[rel["domain"]] += 1
range_counts[rel["range"]] += 1
# Create DataFrames
domain_df = pd.DataFrame([
{"Class": cls, "Count": count, "Type": "Domain"}
for cls, count in domain_counts.items()
])
range_df = pd.DataFrame([
{"Class": cls, "Count": count, "Type": "Range"}
for cls, count in range_counts.items()
])
# Combine
combined_df = pd.concat([domain_df, range_df])
# Create plot
if not combined_df.empty:
fig = px.bar(combined_df,
x="Class",
y="Count",
color="Type",
barmode="group",
title="Classes as Domain vs Range in Relationships",
color_discrete_map={"Domain": "#1f77b4", "Range": "#ff7f0e"})
fig.update_layout(xaxis={'categoryorder':'total descending'})
st.plotly_chart(fig, use_container_width=True)
def display_entity_details(entity_info: Dict[str, Any], ontology_manager):
"""Display detailed information about an entity."""
if not entity_info:
st.warning("Entity not found.")
return
st.subheader(f"📝 Entity: {entity_info['id']}")
# Determine entity type and get class hierarchy
entity_type = entity_info.get("type", "")
class_type = entity_info.get("class", entity_info.get("class_type", ""))
class_hierarchy = []
if class_type:
current_class = class_type
while current_class:
class_hierarchy.append(current_class)
parent_class = ontology_manager.ontology_data["classes"].get(current_class, {}).get("subClassOf", "")
if not parent_class or parent_class == current_class: # Prevent infinite loops
break
current_class = parent_class
# Display entity metadata
col1, col2 = st.columns([1, 2])
with col1:
st.markdown("### Basic Information")
# Basic info metrics
st.metric("Entity Type", entity_type)
if class_type:
st.metric("Class", class_type)
# Display class hierarchy
if class_hierarchy and len(class_hierarchy) > 1:
st.markdown("**Class Hierarchy:**")
hierarchy_str = " → ".join(reversed(class_hierarchy))
st.markdown(f"```\n{hierarchy_str}\n```")
with col2:
# Display class description if available
if "class_description" in entity_info:
st.markdown("### Description")
st.markdown(entity_info.get("class_description", "No description available."))
# Properties
if "properties" in entity_info and entity_info["properties"]:
st.markdown("### Properties")
# Create a more structured property display
properties = []
for key, value in entity_info["properties"].items():
# Handle different value types
if isinstance(value, list):
value_str = ", ".join(str(v) for v in value)
else:
value_str = str(value)
properties.append({"Property": key, "Value": value_str})
# Display as table with highlighting
property_df = pd.DataFrame(properties)
st.dataframe(
property_df,
column_config={
"Property": st.column_config.TextColumn("Property", width="medium"),
"Value": st.column_config.TextColumn("Value", width="large")
},
hide_index=True
)
# Relationships with visual enhancements
if "relationships" in entity_info and entity_info["relationships"]:
st.markdown("### Relationships")
# Group relationships by direction
outgoing = []
incoming = []
for rel in entity_info["relationships"]:
if "direction" in rel and rel["direction"] == "outgoing":
outgoing.append({
"Relationship": rel["type"],
"Direction": "→",
"Related Entity": rel["target"]
})
elif "direction" in rel and rel["direction"] == "incoming":
incoming.append({
"Relationship": rel["type"],
"Direction": "←",
"Related Entity": rel["source"]
})
# Create tabs for outgoing and incoming
if outgoing or incoming:
tab1, tab2 = st.tabs(["Outgoing Relationships", "Incoming Relationships"])
with tab1:
if outgoing:
st.dataframe(
pd.DataFrame(outgoing),
column_config={
"Relationship": st.column_config.TextColumn("Relationship Type", width="medium"),
"Direction": st.column_config.TextColumn("Direction", width="small"),
"Related Entity": st.column_config.TextColumn("Target Entity", width="medium")
},
hide_index=True
)
else:
st.info("No outgoing relationships.")
with tab2:
if incoming:
st.dataframe(
pd.DataFrame(incoming),
column_config={
"Relationship": st.column_config.TextColumn("Relationship Type", width="medium"),
"Direction": st.column_config.TextColumn("Direction", width="small"),
"Related Entity": st.column_config.TextColumn("Source Entity", width="medium")
},
hide_index=True
)
else:
st.info("No incoming relationships.")
# Visual relationship graph
st.markdown("#### Relationship Graph")
display_entity_relationship_graph(entity_info, ontology_manager)
def display_entity_relationship_graph(entity_info: Dict[str, Any], ontology_manager):
"""Display a graph of an entity's relationships."""
entity_id = entity_info["id"]
# Create graph
G = nx.DiGraph()
# Add central entity
G.add_node(entity_id, type="central")
# Add related entities and relationships
for rel in entity_info.get("relationships", []):
if "direction" in rel and rel["direction"] == "outgoing":
target = rel["target"]
rel_type = rel["type"]
# Add target node if not exists
if target not in G:
target_info = ontology_manager.get_entity_info(target)
node_type = target_info.get("type", "unknown")
G.add_node(target, type=node_type)
# Add edge
G.add_edge(entity_id, target, type=rel_type)
elif "direction" in rel and rel["direction"] == "incoming":
source = rel["source"]
rel_type = rel["type"]
# Add source node if not exists
if source not in G:
source_info = ontology_manager.get_entity_info(source)
node_type = source_info.get("type", "unknown")
G.add_node(source, type=node_type)
# Add edge
G.add_edge(source, entity_id, type=rel_type)
# Use a force-directed layout
pos = nx.spring_layout(G, k=0.5, iterations=50)
# Create Plotly figure
fig = go.Figure()
# Add edges with curved lines
for source, target, data in G.edges(data=True):
x0, y0 = pos[source]
x1, y1 = pos[target]
rel_type = data.get("type", "unknown")
# Calculate edge midpoint for label
mid_x = (x0 + x1) / 2
mid_y = (y0 + y1) / 2
# Draw edge
fig.add_trace(go.Scatter(
x=[x0, x1],
y=[y0, y1],
mode="lines",
line=dict(width=1, color="#888"),
hoverinfo="text",
hovertext=f"Relationship: {rel_type}",
showlegend=False
))
# Add relationship label
fig.add_trace(go.Scatter(
x=[mid_x],
y=[mid_y],
mode="text",
text=[rel_type],
textposition="middle center",
textfont=dict(size=10, color="#555"),
hoverinfo="none",
showlegend=False
))
# Add nodes with different colors by type
node_groups = defaultdict(list)
for node, data in G.nodes(data=True):
node_type = data.get("type", "unknown")
node_info = ontology_manager.get_entity_info(node)
# Get friendly name if available
name = node
if "properties" in node_info and "name" in node_info["properties"]:
name = node_info["properties"]["name"]
node_groups[node_type].append({
"id": node,
"name": name,
"x": pos[node][0],
"y": pos[node][1],
"info": node_info
})
# Define colors for different node types
colors = {
"central": "#ff7f0e", # Highlighted color for central entity
"instance": "#1f77b4",
"class": "#2ca02c",
"unknown": "#d62728"
}
# Add each node group with appropriate styling
for node_type, nodes in node_groups.items():
# Default to unknown color if type not in map
color = colors.get(node_type, colors["unknown"])
x = [node["x"] for node in nodes]
y = [node["y"] for node in nodes]
text = [node["name"] for node in nodes]
# Prepare hover text
hover_text = []
for node in nodes:
info = node["info"]
hover = f"ID: {node['id']}<br>Name: {node['name']}"
if "class_type" in info:
hover += f"<br>Type: {info['class_type']}"
hover_text.append(hover)
# Adjust size for central entity
size = 20 if node_type == "central" else 15
fig.add_trace(go.Scatter(
x=x,
y=y,
mode="markers+text",
marker=dict(
size=size,
color=color,
line=dict(width=2, color="white")
),
text=text,
textposition="bottom center",
hoverinfo="text",
hovertext=hover_text,
name=node_type.capitalize()
))
# Update layout
fig.update_layout(
title=f"Relationships for {entity_id}",
title_x=0.5,
showlegend=True,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=500
)
st.plotly_chart(fig, use_container_width=True)
def display_graph_visualization(knowledge_graph, central_entity=None, max_distance=2):
"""Display an interactive visualization of the knowledge graph."""
st.subheader("🕸️ Knowledge Graph Visualization")
# Controls for the visualization
with st.expander("Visualization Settings", expanded=True):
col1, col2, col3 = st.columns(3)
with col1:
include_classes = st.checkbox("Include Classes", value=True)
with col2:
include_instances = st.checkbox("Include Instances", value=True)
with col3:
include_properties = st.checkbox("Include Properties", value=False)
st.markdown("---")
col1, col2 = st.columns(2)
with col1:
max_distance = st.slider("Max Relationship Distance", 1, 5, max_distance)
with col2:
layout_algorithm = st.selectbox(
"Layout Algorithm",
["Force-Directed", "Hierarchical", "Radial", "Circular"],
index=0
)
# Generate HTML visualization
html = knowledge_graph.generate_html_visualization(
include_classes=include_classes,
include_instances=include_instances,
central_entity=central_entity,
max_distance=max_distance,
include_properties=include_properties,
layout_algorithm=layout_algorithm.lower()
)
# Render the HTML
render_html_in_streamlit(html)
# Entity filter
with st.expander("Focus on Entity", expanded=central_entity is not None):
# Get all entities
entities = []
for class_name in knowledge_graph.ontology_manager.get_classes():
entities.extend(knowledge_graph.ontology_manager.get_instances_of_class(class_name))
# Deduplicate
entities = sorted(set(entities))
# Select entity
selected_entity = st.selectbox(
"Select Entity to Focus On",
["None"] + entities,
index=0 if central_entity is None else entities.index(central_entity) + 1
)
if selected_entity != "None":
st.button("Focus Graph", on_click=lambda: st.experimental_rerun())
# Display graph statistics
stats = knowledge_graph.get_graph_statistics()
if stats:
st.markdown("### Graph Statistics")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Nodes", stats.get("node_count", 0))
col2.metric("Edges", stats.get("edge_count", 0))
col3.metric("Classes", stats.get("class_count", 0))
col4.metric("Instances", stats.get("instance_count", 0))
# Display relationship counts
if "relationship_counts" in stats:
rel_counts = stats["relationship_counts"]
rel_data = [{"Relationship": rel, "Count": count} for rel, count in rel_counts.items()
if rel not in ["subClassOf", "instanceOf"]] # Filter out structural relationships
if rel_data:
df = pd.DataFrame(rel_data)
fig = px.bar(df,
x="Relationship",
y="Count",
title="Relationship Distribution",
color="Count",
color_continuous_scale="viridis")
st.plotly_chart(fig, use_container_width=True)
def visualize_path(path_info, ontology_manager):
"""Visualize a semantic path between entities with enhanced graphics and details."""
if not path_info or "path" not in path_info:
st.warning("No path information available.")
return
st.subheader("🔄 Semantic Path Visualization")
path = path_info["path"]
# Get entity information for each node in the path
entities = {}
all_nodes = set()
# Add source and target
if "source" in path_info:
source_id = path_info["source"]
all_nodes.add(source_id)
entities[source_id] = ontology_manager.get_entity_info(source_id)
if "target" in path_info:
target_id = path_info["target"]
all_nodes.add(target_id)
entities[target_id] = ontology_manager.get_entity_info(target_id)
# Add all entities in the path
for edge in path:
source_id = edge["source"]
target_id = edge["target"]
all_nodes.add(source_id)
all_nodes.add(target_id)
if source_id not in entities:
entities[source_id] = ontology_manager.get_entity_info(source_id)
if target_id not in entities:
entities[target_id] = ontology_manager.get_entity_info(target_id)
# Create tabs for different views
tab1, tab2, tab3 = st.tabs(["Path Visualization", "Entity Details", "Path Summary"])
with tab1:
# Display path as a sequence diagram
display_path_visualization(path, entities)
with tab2:
# Display details of entities in the path
st.markdown("### Entities in Path")
# Group entities by type
entities_by_type = defaultdict(list)
for entity_id in all_nodes:
entity_info = entities.get(entity_id, {})
entity_type = entity_info.get("class_type", entity_info.get("class", "Unknown"))
entities_by_type[entity_type].append((entity_id, entity_info))
# Create an expander for each entity type
for entity_type, entity_list in entities_by_type.items():
with st.expander(f"{entity_type} ({len(entity_list)})", expanded=True):
for entity_id, entity_info in entity_list:
st.markdown(f"**{entity_id}**")
# Display properties if available
if "properties" in entity_info and entity_info["properties"]:
props_markdown = ", ".join([f"**{k}**: {v}" for k, v in entity_info["properties"].items()])
st.markdown(props_markdown)
st.markdown("---")
with tab3:
# Display textual summary of the path
st.markdown("### Path Description")
# If path_info has text, use it
if "text" in path_info and path_info["text"]:
st.markdown(f"**Path:** {path_info['text']}")
else:
# Otherwise, generate a description
path_steps = []
for edge in path:
source_id = edge["source"]
target_id = edge["target"]
relation = edge["type"]
# Get readable names if available
source_name = source_id
target_name = target_id
if source_id in entities and "properties" in entities[source_id]:
props = entities[source_id]["properties"]
if "name" in props:
source_name = props["name"]
if target_id in entities and "properties" in entities[target_id]:
props = entities[target_id]["properties"]
if "name" in props:
target_name = props["name"]
path_steps.append(f"{source_name} **{relation}** {target_name}")
st.markdown(" → ".join(path_steps))
# Display relevant business rules
relevant_rules = find_relevant_rules_for_path(path, ontology_manager)
if relevant_rules:
st.markdown("### Relevant Business Rules")
for rule in relevant_rules:
st.markdown(f"- **{rule['id']}**: {rule['description']}")
def display_path_visualization(path, entities):
"""Create an enhanced visual representation of the path."""
if not path:
st.info("Path is empty.")
return
# Create nodes and positions
nodes = []
x_positions = {}
# Collect all unique nodes in the path
unique_nodes = set()
for edge in path:
unique_nodes.add(edge["source"])
unique_nodes.add(edge["target"])
# Create ordered list of nodes
path_nodes = []
if path:
# Start with the first source
current_node = path[0]["source"]
path_nodes.append(current_node)
# Follow the path
for edge in path:
target = edge["target"]
path_nodes.append(target)
current_node = target
else:
# If no path, just use the unique nodes
path_nodes = list(unique_nodes)
# Assign positions along a line
for i, node_id in enumerate(path_nodes):
x_positions[node_id] = i
# Get node info
entity_info = entities.get(node_id, {})
properties = entity_info.get("properties", {})
entity_type = entity_info.get("class_type", entity_info.get("class", "Unknown"))
# Get display name
name = properties.get("name", node_id)
nodes.append({
"id": node_id,
"name": name,
"type": entity_type,
"properties": properties
})
# Create Plotly figure for horizontal path
fig = go.Figure()
# Add nodes
node_x = []
node_y = []
node_text = []
node_hover = []
node_colors = []
# Color mapping for entity types
color_map = {}
for node in nodes:
node_type = node["type"]
if node_type not in color_map:
# Assign colors from a categorical colorscale
idx = len(color_map) % len(px.colors.qualitative.Plotly)
color_map[node_type] = px.colors.qualitative.Plotly[idx]
for node in nodes:
node_x.append(x_positions[node["id"]])
node_y.append(0) # All nodes at y=0 for a horizontal path
node_text.append(node["name"])
# Create detailed hover text
hover = f"{node['id']}<br>{node['type']}"
for k, v in node["properties"].items():
hover += f"<br>{k}: {v}"
node_hover.append(hover)
# Set node color by type
node_colors.append(color_map.get(node["type"], "#7f7f7f"))
# Add node trace
fig.add_trace(go.Scatter(
x=node_x,
y=node_y,
mode="markers+text",
marker=dict(
size=30,
color=node_colors,
line=dict(width=2, color="DarkSlateGrey")
),
text=node_text,
textposition="bottom center",
hovertext=node_hover,
hoverinfo="text",
name="Entities"
))
# Add edges with relationship labels
for edge in path:
source = edge["source"]
target = edge["target"]
edge_type = edge["type"]
source_pos = x_positions[source]
target_pos = x_positions[target]
# Add edge line
fig.add_trace(go.Scatter(
x=[source_pos, target_pos],
y=[0, 0],
mode="lines",
line=dict(width=2, color="#888"),
hoverinfo="none",
showlegend=False
))
# Add relationship label above the line
fig.add_trace(go.Scatter(
x=[(source_pos + target_pos) / 2],
y=[0.1], # Slightly above the line
mode="text",
text=[edge_type],
textposition="top center",
hoverinfo="none",
showlegend=False
))
# Update layout
fig.update_layout(
title="Path Visualization",
showlegend=False,
hovermode="closest",
margin=dict(b=40, l=20, r=20, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=300,
plot_bgcolor="white"
)
# Add a legend for entity types
for entity_type, color in color_map.items():
fig.add_trace(go.Scatter(
x=[None],
y=[None],
mode="markers",
marker=dict(size=10, color=color),
name=entity_type,
showlegend=True
))
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=-0.3,
xanchor="center",
x=0.5
))
st.plotly_chart(fig, use_container_width=True)
# Add step-by-step description
st.markdown("### Step-by-Step Path")
for i, edge in enumerate(path):
source = edge["source"]
target = edge["target"]
relation = edge["type"]
# Get display names
source_info = entities.get(source, {})
target_info = entities.get(target, {})
source_name = source
if "properties" in source_info and "name" in source_info["properties"]:
source_name = source_info["properties"]["name"]
target_name = target
if "properties" in target_info and "name" in target_info["properties"]:
target_name = target_info["properties"]["name"]
st.markdown(f"**Step {i+1}:** {source_name} ({source}) **{relation}** {target_name} ({target})")
def find_relevant_rules_for_path(path, ontology_manager):
"""Find business rules relevant to the entities and relationships in a path."""
rules = ontology_manager.ontology_data.get("rules", [])
if not rules:
return []
# Extract entities and relationships from the path
entity_types = set()
relationship_types = set()
for edge in path:
source = edge["source"]
target = edge["target"]
relation = edge["type"]
# Get entity info
source_info = ontology_manager.get_entity_info(source)
target_info = ontology_manager.get_entity_info(target)
# Add entity types
if "class_type" in source_info:
entity_types.add(source_info["class_type"])
if "class_type" in target_info:
entity_types.add(target_info["class_type"])
# Add relationship type
relationship_types.add(relation)
# Find rules that mention these entities or relationships
relevant_rules = []
for rule in rules:
rule_text = json.dumps(rule).lower()
# Check if rule mentions any of the entity types or relationships
is_relevant = False
for entity_type in entity_types:
if entity_type.lower() in rule_text:
is_relevant = True
break
if not is_relevant:
for rel_type in relationship_types:
if rel_type.lower() in rule_text:
is_relevant = True
break
if is_relevant:
relevant_rules.append(rule)
return relevant_rules
def display_reasoning_trace(query: str, retrieved_docs: List[Dict], answer: str, ontology_manager):
"""Display an enhanced trace of how ontological reasoning was used to answer the query."""
st.subheader("🧠 Ontology-Enhanced Reasoning")
# Create a multi-tab interface for different aspects of reasoning
tab1, tab2, tab3 = st.tabs(["Query Analysis", "Knowledge Retrieval", "Reasoning Path"])
with tab1:
# Extract entity and relationship mentions with confidence
entity_mentions, relationship_mentions = analyze_query_ontology_concepts(query, ontology_manager)
# Display detected entities with confidence scores
if entity_mentions:
st.markdown("### Entities Detected in Query")
# Convert to DataFrame for visualization
entity_df = pd.DataFrame([{
"Entity Type": e["type"],
"Confidence": e["confidence"],
"Description": e["description"]
} for e in entity_mentions])
# Sort by confidence
entity_df = entity_df.sort_values("Confidence", ascending=False)
# Create a horizontal bar chart
fig = px.bar(entity_df,
x="Confidence",
y="Entity Type",
orientation='h',
title="Entity Type Detection Confidence",
color="Confidence",
color_continuous_scale="Blues",
text="Confidence")
fig.update_traces(texttemplate='%{text:.0%}', textposition='outside')
fig.update_layout(xaxis_tickformat=".0%")
st.plotly_chart(fig, use_container_width=True)
# Display descriptions
st.subheader("Entity Type Descriptions")
st.dataframe(
entity_df[["Entity Type", "Description"]],
hide_index=True
)
# Display detected relationships
if relationship_mentions:
st.markdown("### Relationships Detected in Query")
# Convert to DataFrame
rel_df = pd.DataFrame([{
"Relationship": r["name"],
"From": r["domain"],
"To": r["range"],
"Confidence": r["confidence"],
"Description": r["description"]
} for r in relationship_mentions])
# Sort by confidence
rel_df = rel_df.sort_values("Confidence", ascending=False)
# Create visualization
fig = px.bar(rel_df,
x="Confidence",
y="Relationship",
orientation='h',
title="Relationship Detection Confidence",
color="Confidence",
color_continuous_scale="Reds",
text="Confidence")
fig.update_traces(texttemplate='%{text:.0%}', textposition='outside')
fig.update_layout(xaxis_tickformat=".0%")
st.plotly_chart(fig, use_container_width=True)
# Display relationship details
st.subheader("Relationship Details")
st.dataframe(
rel_df[["Relationship", "From", "To", "Description"]],
hide_index=True
)
with tab2:
# Create an enhanced visualization of the retrieval process
st.markdown("### Knowledge Retrieval Process")
# Group retrieved documents by source
docs_by_source = defaultdict(list)
for doc in retrieved_docs:
if hasattr(doc, 'metadata'):
source = doc.metadata.get('source', 'unknown')
docs_by_source[source].append(doc)
else:
docs_by_source['unknown'].append(doc)
# Display retrieval visualization
col1, col2 = st.columns([2, 1])
with col1:
# Create a Sankey diagram to show flow from query to sources to answer
display_retrieval_flow(query, docs_by_source)
with col2:
# Display source distribution
source_counts = {source: len(docs) for source, docs in docs_by_source.items()}
# Create a pie chart
fig = px.pie(
values=list(source_counts.values()),
names=list(source_counts.keys()),
title="Retrieved Context Sources",
color_discrete_sequence=px.colors.qualitative.Plotly
)
st.plotly_chart(fig, use_container_width=True)
# Display retrieved document details in expandable sections
for source, docs in docs_by_source.items():
with st.expander(f"{source.capitalize()} ({len(docs)})", expanded=source == "ontology_context"):
for i, doc in enumerate(docs):
# Add separator between documents
if i > 0:
st.markdown("---")
# Display document content
if hasattr(doc, 'page_content'):
st.markdown(f"**Content:**")
# Format depending on source
if source in ["ontology", "ontology_context"]:
st.markdown(doc.page_content)
else:
st.code(doc.page_content)
# Display metadata if present
if hasattr(doc, 'metadata') and doc.metadata:
st.markdown("**Metadata:**")
for key, value in doc.metadata.items():
if key != 'source': # Already shown in section title
st.markdown(f"- **{key}**: {value}")
with tab3:
# Show the reasoning flow from query to answer
st.markdown("### Ontological Reasoning Process")
# Display reasoning steps
reasoning_steps = generate_reasoning_steps(query, entity_mentions, relationship_mentions, retrieved_docs, answer)
for i, step in enumerate(reasoning_steps):
with st.expander(f"Step {i+1}: {step['title']}", expanded=i == 0):
st.markdown(step["description"])
# Visualization of how ontological structure influenced the answer
st.markdown("### How Ontology Enhanced the Answer")
# Display ontology advantage explanation
advantages = explain_ontology_advantages(entity_mentions, relationship_mentions)
for adv in advantages:
st.markdown(f"**{adv['title']}**")
st.markdown(adv["description"])
def analyze_query_ontology_concepts(query: str, ontology_manager) -> Tuple[List[Dict], List[Dict]]:
"""
Analyze the query to identify ontology concepts with confidence scores.
This is a simplified implementation that would be replaced with NLP in production.
"""
query_lower = query.lower().split()
# Entity detection
entity_mentions = []
classes = ontology_manager.get_classes()
for class_name in classes:
# Simple token matching (would use NER in production)
if class_name.lower() in query_lower:
# Get class info
class_info = ontology_manager.ontology_data["classes"].get(class_name, {})
# Assign a confidence score (this would be from an ML model in production)
# Here we use a simple heuristic based on word length and specificity
confidence = min(0.95, 0.5 + (len(class_name) / 20))
entity_mentions.append({
"type": class_name,
"confidence": confidence,
"description": class_info.get("description", "")
})
# Relationship detection
relationship_mentions = []
relationships = ontology_manager.ontology_data.get("relationships", [])
for rel in relationships:
rel_name = rel["name"]
# Simple token matching
if rel_name.lower() in query_lower:
# Assign confidence
confidence = min(0.9, 0.5 + (len(rel_name) / 20))
relationship_mentions.append({
"name": rel_name,
"domain": rel["domain"],
"range": rel["range"],
"confidence": confidence,
"description": rel.get("description", "")
})
return entity_mentions, relationship_mentions
def display_retrieval_flow(query: str, docs_by_source: Dict[str, List]):
"""Create a Sankey diagram showing the flow from query to sources to answer."""
# Define node labels
nodes = ["Query"]
# Add source nodes
for source in docs_by_source.keys():
nodes.append(f"Source: {source.capitalize()}")
nodes.append("Answer")
# Define links
source_indices = []
target_indices = []
values = []
# Links from query to sources
for i, (source, docs) in enumerate(docs_by_source.items()):
source_indices.append(0) # Query is index 0
target_indices.append(i + 1) # Source indices start at 1
values.append(len(docs)) # Width based on number of docs
# Links from sources to answer
for i in range(len(docs_by_source)):
source_indices.append(i + 1) # Source index
target_indices.append(len(nodes) - 1) # Answer is last node
values.append(values[i]) # Same width as query to source
# Create Sankey diagram
fig = go.Figure(data=[go.Sankey(
node=dict(
pad=15,
thickness=20,
line=dict(color="black", width=0.5),
label=nodes,
color=["#1f77b4"] + [px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)]
for i in range(len(docs_by_source))] + ["#2ca02c"]
),
link=dict(
source=source_indices,
target=target_indices,
value=values
)
)])
fig.update_layout(
title="Information Flow in RAG Process",
font=dict(size=12)
)
st.plotly_chart(fig, use_container_width=True)
def generate_reasoning_steps(query: str, entity_mentions: List[Dict], relationship_mentions: List[Dict],
retrieved_docs: List[Dict], answer: str) -> List[Dict]:
"""Generate reasoning steps to explain how the system arrived at the answer."""
steps = []
# Step 1: Query Understanding
steps.append({
"title": "Query Understanding",
"description": f"""The system analyzes the query "{query}" and identifies key concepts from the ontology.
{len(entity_mentions)} entity types and {len(relationship_mentions)} relationship types are recognized, allowing
the system to understand the semantic context of the question."""
})
# Step 2: Knowledge Retrieval
if retrieved_docs:
doc_count = len(retrieved_docs)
ontology_count = sum(1 for doc in retrieved_docs if hasattr(doc, 'metadata') and
doc.metadata.get('source', '') in ['ontology', 'ontology_context'])
steps.append({
"title": "Knowledge Retrieval",
"description": f"""Based on the identified concepts, the system retrieves {doc_count} relevant pieces of information,
including {ontology_count} from the structured ontology. This hybrid approach combines traditional vector retrieval
with ontology-aware semantic retrieval, enabling access to both explicit and implicit knowledge."""
})
# Step 3: Relationship Traversal
if relationship_mentions:
rel_names = [r["name"] for r in relationship_mentions]
steps.append({
"title": "Relationship Traversal",
"description": f"""The system identifies key relationships in the ontology: {', '.join(rel_names)}.
By traversing these relationships, the system can connect concepts that might not appear together in the same text,
allowing for multi-hop reasoning across the knowledge graph."""
})
# Step 4: Ontological Inference
if entity_mentions:
entity_types = [e["type"] for e in entity_mentions]
steps.append({
"title": "Ontological Inference",
"description": f"""Using the hierarchical structure of entities like {', '.join(entity_types)},
the system makes inferences based on class inheritance and relationship constraints defined in the ontology.
This allows it to reason about properties and relationships that might not be explicitly stated."""
})
# Step 5: Answer Generation
steps.append({
"title": "Answer Synthesis",
"description": f"""Finally, the system synthesizes the retrieved information and ontological knowledge to generate a comprehensive answer.
The structured nature of the ontology ensures that the answer accurately reflects the relationships between concepts
and respects the business rules defined in the knowledge model."""
})
return steps
def explain_ontology_advantages(entity_mentions: List[Dict], relationship_mentions: List[Dict]) -> List[Dict]:
"""Explain how ontology enhanced the RAG process."""
advantages = []
if entity_mentions:
advantages.append({
"title": "Hierarchical Knowledge Representation",
"description": """The ontology provides a hierarchical class structure that enables the system to understand
that concepts are related through is-a relationships. For instance, knowing that a Manager is an Employee
allows the system to apply Employee-related knowledge when answering questions about Managers, even if
the specific information was only stated for Employees in general."""
})
if relationship_mentions:
advantages.append({
"title": "Explicit Relationship Semantics",
"description": """The ontology defines explicit relationships between concepts with clear semantics.
This allows the system to understand how entities are connected beyond simple co-occurrence in text.
For example, understanding that 'ownedBy' connects Products to Departments helps answer questions
about product ownership and departmental responsibilities."""
})
advantages.append({
"title": "Constraint-Based Reasoning",
"description": """Business rules in the ontology provide constraints that guide the reasoning process.
These rules ensure the system's answers are consistent with the organization's policies and practices.
For instance, rules about approval workflows or data classification requirements can inform answers
about process-related questions."""
})
advantages.append({
"title": "Cross-Domain Knowledge Integration",
"description": """The ontology connects concepts across different domains of the enterprise, enabling
integrated reasoning that traditional document-based retrieval might miss. This allows the system to
answer questions that span organizational boundaries, such as how marketing decisions affect product
development or how customer feedback influences business strategy."""
})
return advantages |