AD2000X's picture
Upload 14 files
e1cced0 verified
raw
history blame
30.8 kB
import streamlit as st
st.set_page_config(page_title="Ontology RAG Demo", layout="wide")
import os
from src.semantic_retriever import SemanticRetriever
from src.ontology_manager import OntologyManager
from src.knowledge_graph import KnowledgeGraph
from src.visualization import (display_ontology_stats, display_entity_details,
display_graph_visualization, visualize_path,
display_reasoning_trace, render_html_in_streamlit)
import networkx as nx
from openai import OpenAI
import json
# Setup
llm = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
ontology_manager = OntologyManager("data/enterprise_ontology.json")
semantic_retriever = SemanticRetriever(ontology_manager=ontology_manager)
knowledge_graph = KnowledgeGraph(ontology_manager=ontology_manager)
k_val = st.sidebar.slider("Top K Results", 1, 10, 3)
def main():
# Page Navigation
st.sidebar.title("Page Navigation")
page = st.sidebar.selectbox(
"Select function",
["RAG comparison demonstration", "Knowledge graph visualization", "Ontology structure analysis", "Entity exploration", "Semantic path visualization", "Inference tracking", "Detailed comparative analysis"]
)
if page == "RAG Comparison Demo":
run_rag_demo()
elif page == "Knowledge Graph Visualization":
run_knowledge_graph_visualization()
elif page == "Ontology Structure Analysis":
run_ontology_structure_analysis()
elif page == "Entity Exploration":
run_entity_exploration()
elif page == "Semantic Path Visualization":
run_semantic_path_visualization()
elif page == "Inference Tracking":
run_reasoning_trace()
elif page == "Detailed comparative analysis":
run_detailed_comparison()
def run_rag_demo():
st.title("Ontology Enhanced RAG Demonstration")
query = st.text_input(
"Enter a question to compare RAG methods:",
"How does customer feedback influence product development?"
)
if query:
col1, col2 = st.columns(2)
with st.spinner("Run two RAG methods..."):
# Traditional RAG
with col1:
st.subheader("Traditional RAG")
vector_docs = semantic_retriever.vector_store.similarity_search(query, k=k_val)
vector_context = "\n\n".join([doc.page_content for doc in vector_docs])
vector_messages = [
{"role": "system", "content": f"You are an enterprise knowledge assistant...\nContext:\n{vector_context}"},
{"role": "user", "content": query}
]
vector_response = llm.chat.completions.create(
model="gpt-3.5-turbo",
messages=vector_messages
)
vector_answer = vector_response.choices[0].message.content
st.markdown("#### answer")
st.write(vector_answer)
st.markdown("#### retrieval context")
for i, doc in enumerate(vector_docs):
with st.expander(f"Source {i+1}"):
st.code(doc.page_content)
# # Ontology RAG
with col2:
st.subheader("Ontology RAG")
result = semantic_retriever.retrieve_with_paths(query, k=k_val)
retrieved_docs = result["documents"]
enhanced_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
enhanced_messages = [
{"role": "system", "content": f"You are an enterprise knowledge assistant with ontology access rights...\nContext:\n{enhanced_context}"},
{"role": "user", "content": query}
]
enhanced_response = llm.chat.completions.create(
model="gpt-3.5-turbo",
messages=enhanced_messages
)
enhanced_answer = enhanced_response.choices[0].message.content
st.markdown("#### answer")
st.write(enhanced_answer)
st.markdown("#### Search context")
for i, doc in enumerate(retrieved_docs):
source = doc.metadata.get("source", "unknown")
label = {
"ontology": "Ontology context",
"text": "Text context",
"ontology_context": "Semantic context",
"semantic_path": "Relationship path"
}.get(source, f"source")
with st.expander(f"{label} {i+1}"):
st.markdown(doc.page_content)
# Store for reasoning trace visualization
st.session_state.query = query
st.session_state.retrieved_docs = retrieved_docs
st.session_state.answer = enhanced_answer
# Difference Analysis
st.markdown("---")
st.subheader("Difference Analysis")
st.markdown("""
The above comparison demonstrates several key advantages of ontology-enhanced RAG:
1. **Structure-aware**: Ontology-augmented methods understand the relationships between entities, not just their textual similarities.
2. **Multi-hop reasoning**: By using the knowledge graph structure, the enhancement method can connect information across multiple relational jumps.
3. **Context enrichment**: Ontologies provide additional context about entity types, attributes, and relationships that are not explicit in the text.
4. Reasoning ability: Structured knowledge allows for logical reasoning that vector similarity alone cannot achieve.
Try more complex queries that require understanding of relationships to see the differences more clearly!
""")
def run_knowledge_graph_visualization():
st.title("Knowledge Graph Visualization")
# Check if there is a center entity selected
central_entity = st.session_state.get('central_entity', None)
# Check if there is a center entity selected
display_graph_visualization(knowledge_graph, central_entity=central_entity, max_distance=2)
# Get and display graphical statistics
graph_stats = knowledge_graph.get_graph_statistics()
if graph_stats:
st.subheader("Graphical Statistics")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total number of nodes", graph_stats.get("node_count", 0))
col2.metric("Total number of edges", graph_stats.get("edge_count", 0))
col3.metric("total number of classes", graph_stats.get("class_count", 0))
col4.metric("Total number of instances", graph_stats.get("instance_count", 0))
# Display the central node
if "central_nodes" in graph_stats and graph_stats["central_nodes"]:
st.subheader("Central Nodes (by Betweenness Centrality)")
central_nodes = graph_stats["central_nodes"]["betweenness"]
nodes_df = []
for node_info in central_nodes:
node_id = node_info["node"]
node_data = knowledge_graph.graph.nodes.get(node_id, {})
node_type = node_data.get("type", "unknown")
if node_type == "instance":
node_class = node_data.get("class_type", "unknown")
properties = node_data.get("properties", {})
name = properties.get("name", node_id)
nodes_df.append({
"ID": node_id,
"Name": name,
"type": node_class,
"Centrality": node_info["centrality"]
})
st.table(nodes_df)
def run_ontology_structure_analysis():
st.title("Ontology Structure Analysis")
# Use the existing ontology statistics display function
display_ontology_stats(ontology_manager)
# Add additional class hierarchy visualization
st.subheader("class hierarchy")
# Get class hierarchy data
class_hierarchy = ontology_manager.get_class_hierarchy()
# Create a NetworkX graph to represent the class hierarchy
G = nx.DiGraph()
# Add nodes and edges
for parent, children in class_hierarchy.items():
if not G.has_node(parent):
G.add_node(parent)
for child in children:
G.add_node(child)
G.add_edge(parent, child)
# Check if there are enough nodes to create the visualization
if len(G.nodes) > 1:
# Generate HTML visualization using knowledge graph class
kg = KnowledgeGraph(ontology_manager)
html = kg.generate_html_visualization(
include_classes=True,
include_instances=False,
max_distance=5,
layout_algorithm="hierarchical"
)
# Rendering HTML
render_html_in_streamlit(html)
def run_entity_exploration():
st.title("Entity Exploration")
# Get all entities
entities = []
for class_name in ontology_manager.get_classes():
entities.extend(ontology_manager.get_instances_of_class(class_name))
# Remove duplicates and sort
entities = sorted(set(entities))
# Create a drop-down selection box
selected_entity = st.selectbox("Select entity", entities)
if selected_entity:
# Get entity information
entity_info = ontology_manager.get_entity_info(selected_entity)
# Display detailed information
display_entity_details(entity_info, ontology_manager)
# Set this entity as the central entity (for knowledge graph visualization)
if st.button("View this entity in the knowledge graph"):
st.session_state.central_entity = selected_entity
st.rerun()
# Get and display entity neighbors
st.subheader("Entity Neighborhood")
max_distance = st.slider("Maximum neighborhood distance", 1, 3, 1)
neighborhood = knowledge_graph.get_entity_neighborhood(
selected_entity,
max_distance=max_distance,
include_classes=True
)
if neighborhood and "neighbors" in neighborhood:
# Display neighbors grouped by distance
for distance in range(1, max_distance+1):
neighbors_at_distance = [n for n in neighborhood["neighbors"] if n["distance"] == distance]
if neighbors_at_distance:
with st.expander(f"Neighbors at distance {distance} ({len(neighbors_at_distance)})"):
for neighbor in neighbors_at_distance:
st.markdown(f"**{neighbor['id']}** ({neighbor.get('class_type', 'unknown')})")
# Display relations
for relation in neighbor.get("relations", []):
direction = "→" if relation["direction"] == "outgoing" else "←"
st.markdown(f"- {direction} {relation['type']}")
st.markdown("---")
def run_semantic_path_visualization():
st.title("Semantic Path Visualization")
# Get all entities
entities = []
for class_name in ontology_manager.get_classes():
entities.extend(ontology_manager.get_instances_of_class(class_name))
# Remove duplicates and sort
entities = sorted(set(entities))
# Create two columns for selecting source and target entities
col1, col2 = st.columns(2)
with col1:
source_entity = st.selectbox("Select source entity", entities, key="source")
with col2:
target_entity = st.selectbox("Select target entity", entities, key="target")
if source_entity and target_entity and source_entity != target_entity:
# Provide a maximum path length option
max_length = st.slider("Maximum path length", 1, 5, 3)
# Find the path
paths = knowledge_graph.find_paths_between_entities(
source_entity,
target_entity,
max_length=max_length
)
if paths:
st.success(f"Found {len(paths)} paths!")
# Create expanders for each path
for i, path in enumerate(paths):
# Calculate path length and relationship type
path_length = len(path)
rel_types = [edge["type"] for edge in path]
with st.expander(f"path {i+1} (length: {path_length}, relation: {', '.join(rel_types)})", expanded=(i==0)):
# Create a text description of the path
path_text = []
entities_in_path = []
for edge in path:
source = edge["source"]
target = edge["target"]
relation = edge["type"]
entities_in_path.append(source)
entities_in_path.append(target)
# Get entity information to get a human-readable name
source_info = ontology_manager.get_entity_info(source)
target_info = ontology_manager.get_entity_info(target)
source_name = source
if "properties" in source_info and "name" in source_info["properties"]:
source_name = source_info["properties"]["name"]
target_name = target
if "properties" in target_info and "name" in target_info["properties"]:
target_name = target_info["properties"]["name"]
path_text.append(f"{source_name} ({source}) **{relation}** {target_name} ({target})")
# Display path description
st.markdown(" → ".join(path_text))
# Prepare path visualization
path_info = {
"source": source_entity,
"target": target_entity,
"path": path,
"text": " → ".join(path_text)
}
# Display path visualization
visualize_path(path_info, ontology_manager)
else:
st.warning(f"No path of length {max_length} or shorter was found between these entities.")
def run_reasoning_trace():
st.title("Inference Tracking Visualization")
if not st.session_state.get("query") or not st.session_state.get("retrieved_docs") or not st.session_state.get("answer"):
st.warning("Please run a query on the RAG comparison page first to generate inference trace data.")
return
# Get data from session state
query = st.session_state.query
retrieved_docs = st.session_state.retrieved_docs
answer = st.session_state.answer
# Show inference trace
display_reasoning_trace(query, retrieved_docs, answer, ontology_manager)
def run_detailed_comparison():
st.title("Detailed comparison of RAG methods")
# Add comparison query options
comparison_queries = [
"How does customer feedback influence product development?",
"Which employees work in the Engineering department?",
"What are the product life cycle stages?",
"How do managers monitor employee performance?",
"What are the responsibilities of the marketing department?"
]
selected_query = st.selectbox(
"Select Compare Query",
comparison_queries,
index=0
)
custom_query = st.text_input("Or enter a custom query:", "")
if custom_query:
query = custom_query
else:
query = selected_query
if st.button("Compare RAG methods"):
with st.spinner("Run detailed comparison..."):
# Start timing
import time
start_time = time.time()
# Run traditional RAG
vector_docs = semantic_retriever.vector_store.similarity_search(query, k=k_val)
vector_context = "\n\n".join([doc.page_content for doc in vector_docs])
vector_messages = [
{"role": "system", "content": f"You are an enterprise knowledge assistant...\nContext:\n{vector_context}"},
{"role": "user", "content": query}
]
vector_response = llm.chat.completions.create(
model="gpt-3.5-turbo",
messages=vector_messages
)
vector_answer = vector_response.choices[0].message.content
vector_time = time.time() - start_time
# Reset the timer
start_time = time.time()
# Run the enhanced RAG
result = semantic_retriever.retrieve_with_paths(query, k=k_val)
retrieved_docs = result["documents"]
enhanced_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
enhanced_messages = [
{"role": "system", "content": f"You are an enterprise knowledge assistant with ontology access rights...\nContext:\n{enhanced_context}"},
{"role": "user", "content": query}
]
enhanced_response = llm.chat.completions.create(
model="gpt-3.5-turbo",
messages=enhanced_messages
)
enhanced_answer = enhanced_response.choices[0].message.content
enhanced_time = time.time() - start_time
# Save the results for visualization
st.session_state.query = query
st.session_state.retrieved_docs = retrieved_docs
st.session_state.answer = enhanced_answer
# Display the comparison results
st.subheader("Comparison results")
# Use tabs to show comparisons in different aspects
tab1, tab2, tab3, tab4 = st.tabs(["Answer Comparison", "Performance Indicators", "Retrieval Source Comparison", "Context Quality"])
with tab1:
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Traditional RAG answer")
st.write(vector_answer)
with col2:
st.markdown("#### Ontology Enhanced RAG Answer")
st.write(enhanced_answer)
with tab2:
# Performance Indicators
col1, col2 = st.columns(2)
with col1:
st.metric("Traditional RAG response time", f"{vector_time:.2f}秒")
# Calculate text related indicators
vector_tokens = len(vector_context.split())
st.metric("Number of retrieved context tokens", vector_tokens)
st.metric("Number of retrieved documents", len(vector_docs))
with col2:
st.metric("Ontology enhanced RAG response time", f"{enhanced_time:.2f}秒")
# Calculate text related indicators
enhanced_tokens = len(enhanced_context.split())
st.metric("Number of retrieved context tokens", enhanced_tokens)
st.metric("Number of retrieved documents", len(retrieved_docs))
# Add a chart
import pandas as pd
import plotly.express as px
# Performance comparison chart
performance_data = {
"Metrics": ["Response time (seconds)", "Number of context tags", "Number of retrieved documents"],
"Traditional RAG": [vector_time, vector_tokens, len(vector_docs)],
"Ontology Enhanced RAG": [enhanced_time, enhanced_tokens, len(retrieved_docs)]
}
df = pd.DataFrame(performance_data)
# Plotly bar chart
fig = px.bar(
df,
x="Indicator",
y=["Traditional RAG", "Ontology Enhanced RAG"],
barmode="group",
title="Performance Index Comparison",
labels={"value": "Numerical value", "variable": "RAG method"}
)
st.plotly_chart(fig)
with tab3:
# Search source comparison
traditional_sources = ["Traditional vector retrieval"] * len(vector_docs)
enhanced_sources = []
for doc in retrieved_docs:
source = doc.metadata.get("source", "unknown")
label = {
"ontology": "Ontology context",
"text": "Text context",
"ontology_context": "Semantic context",
"semantic_path": "Relationship path"
}.get(source, "unknown source")
enhanced_sources.append(label)
# Create a source distribution chart
source_counts = {}
for source in enhanced_sources:
if source in source_counts:
source_counts[source] += 1
else:
source_counts[source] = 1
source_df = pd.DataFrame({
"Source type": list(source_counts.keys()),
"Number of documents": list(source_counts.values())
})
fig = px.pie(
source_df,
values="Number of documents",
names="Source type",
title="Ontology-enhanced RAG retrieval source distribution"
)
st.plotly_chart(fig)
# Show the relationship between the source and the answer
st.subheader("Relationship between source and answer")
st.markdown("""
Ontology-enhanced methods leverage multiple sources of knowledge to construct more comprehensive answers. The figure above shows the distribution of different sources.
In particular, semantic context and relation paths provide knowledge that cannot be captured by traditional vector retrieval, enabling the system to connect concepts and perform multi-hop reasoning.
""")
with tab4:
# Contextual quality assessment
st.subheader("Contextual Quality Assessment")
# Create an evaluation function (simplified version)
def evaluate_context(docs):
metrics = {
"Direct Relevance": 0,
"Semantic Richness": 0,
"Structure Information": 0,
"Relationship Information": 0
}
for doc in docs:
content = doc.page_content if hasattr(doc, "page_content") else ""
# Direct Relevance - Based on Keywords
if any(kw in content.lower() for kw in query.lower().split()):
metrics["direct relevance"] += 1
# Semantic richness - based on text length
metrics["semantic richness"] += min(1, len(content.split()) / 50)
# Structural information - from the body
if hasattr(doc, "metadata") and doc.metadata.get("source") in ["ontology", "ontology_context"]:
metrics["Structure Information"] += 1
# Relationship information - from path
if hasattr(doc, "metadata") and doc.metadata.get("source") == "semantic_path":
metrics["relationship information"] += 1
# Standardization
for key in metrics:
metrics[key] = min(10, metrics[key])
return metrics
# Evaluate the two methods
vector_metrics = evaluate_context(vector_docs)
enhanced_metrics = evaluate_context(retrieved_docs)
# Create a comparative radar chart
metrics_df = pd.DataFrame({
"metrics": list(vector_metrics.keys()),
"Traditional RAG": list(vector_metrics.values()),
"Ontology Enhanced RAG": list(enhanced_metrics.values())
})
# Convert data to Plotly radar chart format
fig = px.line_polar(
metrics_df,
r=["Traditional RAG", "Ontology Enhanced RAG"],
theta="Indicator",
line_close=True,
range_r=[0, 10],
title="Contextual Quality Comparison"
)
st.plotly_chart(fig)
st.markdown("""
The figure above shows the comparison of the two RAG methods in terms of contextual quality. Ontology-enhanced RAG performs better in multiple dimensions:
1. **Direct relevance**: the degree of relevance between the search content and the query
2. **Semantic Richness**: Information density and richness of the retrieval context
3. **Structural information**: structured knowledge of entity types, attributes, and relationships
4. **Relationship information**: explicit relationships and connection paths between entities
The advantage of ontology-enhanced RAG is that it can retrieve structured knowledge and relational information, which are missing in traditional RAG methods.
""")
# Display detailed analysis section
st.subheader("Method Effect Analysis")
with st.expander("Comparison of advantages and disadvantages", expanded=True):
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Traditional RAG")
st.markdown("""
**Advantages**:
- Simple implementation and light computational burden
- Works well with unstructured text
- Response times are usually faster
**Disadvantages**:
- Unable to capture relationships between entities
- Lack of context for structured knowledge
- Difficult to perform multi-hop reasoning
- Retrieval is mainly based on text similarity
""")
with col2:
st.markdown("#### Ontology Enhanced RAG")
st.markdown("""
**Advantages**:
- Ability to understand relationships and connections between entities
- Provides rich structured knowledge context
- Support multi-hop reasoning and path discovery
- Combining vector similarity and semantic relationship
**Disadvantages**:
- Higher implementation complexity
- Need to maintain the ontology model
- The computational overhead is relatively high
- Retrieval and inference times may be longer
""")
# Add usage scenario suggestions
with st.expander("Applicable scenarios"):
st.markdown("""
### Traditional RAG applicable scenarios
- Simple fact-finding
- Unstructured document retrieval
- Applications with high response time requirements
- When the document content is clear and direct
### Applicable scenarios for Ontology Enhanced RAG
- Complex knowledge association query
- Problems that require understanding of relationships between entities
- Applications that require cross-domain reasoning
- Enterprise Knowledge Management System
- Reasoning scenarios that require high accuracy and consistency
- Applications that require implicit knowledge discovery
""")
# Add practical application examples
with st.expander("Actual Application Case"):
st.markdown("""
### Enterprise Knowledge Management
Ontology-enhanced RAG systems can help enterprises effectively organize and access their knowledge assets, connect information in different departments and systems, and provide more comprehensive business insights.
### Product development decision support
By understanding the relationship between customer feedback, product features, and market data, the system can provide more valuable support for product development decisions.
### Complex compliance query
In compliance problems that require consideration of multiple rules and relationships, ontology-enhanced RAG can provide rule-based reasoning, ensuring that recommendations comply with all applicable policies and regulations.
### Diagnostics and Troubleshooting
In technical support and troubleshooting scenarios, the system can connect symptoms, causes, and solutions to provide more accurate diagnoses through multi-hop reasoning.
""")