File size: 6,283 Bytes
3898a54
bd0ca4f
 
 
3898a54
 
 
 
 
26cd7aa
 
 
 
7b1f330
bd0ca4f
 
26cd7aa
ddf0017
fc8feae
7b1f330
 
 
 
 
26cd7aa
3898a54
7b1f330
bd0ca4f
 
7b1f330
bd0ca4f
3898a54
7b1f330
bd0ca4f
 
7b1f330
bd0ca4f
3898a54
7b1f330
bd0ca4f
 
7b1f330
bd0ca4f
7b1f330
 
bd0ca4f
3898a54
bd0ca4f
 
7b1f330
bd0ca4f
 
7b1f330
bd0ca4f
 
7b1f330
26cd7aa
7b1f330
 
3898a54
 
 
 
 
7b1f330
 
3898a54
26cd7aa
7b1f330
26cd7aa
7b1f330
 
3898a54
 
 
 
 
7b1f330
 
3898a54
26cd7aa
7b1f330
26cd7aa
7b1f330
 
3898a54
 
 
 
 
7b1f330
 
3898a54
26cd7aa
 
 
 
 
 
 
 
 
7b1f330
 
dc685e7
 
bd0ca4f
 
7b1f330
3898a54
 
bd0ca4f
7b1f330
26cd7aa
bd0ca4f
 
26cd7aa
bd0ca4f
 
26cd7aa
 
 
 
 
 
3898a54
 
 
26cd7aa
 
 
3153352
26cd7aa
7b1f330
3898a54
 
 
7b1f330
bd0ca4f
 
7b1f330
 
cc398d8
bd0ca4f
3898a54
7b1f330
bd0ca4f
 
26cd7aa
 
fc8feae
 
26cd7aa
7b1f330
 
 
 
 
 
 
 
 
 
 
 
 
 
26cd7aa
7b1f330
 
 
 
 
3898a54
7b1f330
26cd7aa
bd0ca4f
26cd7aa
7b1f330
 
 
 
 
 
 
fc8feae
3898a54
 
fc8feae
7b1f330
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client

load_dotenv()

supabase_url = 'https://qzydfaroejcpolxfgfim.supabase.co'
supabase_key = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InF6eWRmYXJvZWpjcG9seGZnZmltIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0OTUwNTQyMywiZXhwIjoyMDY1MDgxNDIzfQ.IBjtn1tPcogCF6DSf8dgR29aTsC61Qh0XueXYcEWG_Q'


@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b


@tool
def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b


@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers."""
    return a - b


@tool
def divide(a: int, b: int) -> float:
    """Divide two numbers."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers."""
    return a % b


@tool
def wiki_search(query: str) -> dict:
    """Search Wikipedia for a query and return maximum 2 results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


@tool
def web_search(query: str) -> dict:
    """Search Tavily for a query and return maximum 3 results."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"web_results": formatted_search_docs}


@tool
def arvix_search(query: str) -> dict:
    """Search Arxiv for a query and return maximum 3 results."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arvix_results": formatted_search_docs}


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

# Build embeddings and vector store client
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")  # dim=768
supabase: Client = create_client(supabase_url, supabase_key)

vector_store = SupabaseVectorStore(
    client=supabase,
    embedding=embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)

create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]

# Build graph function
def build_graph(provider: str = "huggingface"):
    """Build the graph"""

    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf"),
            temperature=0,
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        query_embedding = embeddings.embed_query(query)  # list of floats

        response = supabase.rpc(
            'match_documents_langchain',
            {
                'match_count': 2,
                'query_embedding': query_embedding
            }
        ).execute()

        docs = response.data
        if not docs or len(docs) == 0:
            answer = "Sorry, I couldn't find an answer to your question."
        else:
            content = docs[0]['content']  # get content of the first matched doc
            if "Final answer :" in content:
                answer = content.split("Final answer :")[-1].strip()
            else:
                answer = content.strip()

        return {"messages": [AIMessage(content=answer)]}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    # If you want to integrate assistant and tools, uncomment and add edges accordingly
    # builder.add_node("assistant", assistant)
    # builder.add_node("tools", ToolNode(tools))
    # builder.add_edge(START, "retriever")
    # builder.add_edge("retriever", "assistant")
    # builder.add_conditional_edges("assistant", tools_condition)
    # builder.add_edge("tools", "assistant")

    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")

    return builder.compile()