"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client load_dotenv() supabase_url = 'https://qzydfaroejcpolxfgfim.supabase.co' supabase_key = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InF6eWRmYXJvZWpjcG9seGZnZmltIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0OTUwNTQyMywiZXhwIjoyMDY1MDgxNDIzfQ.IBjtn1tPcogCF6DSf8dgR29aTsC61Qh0XueXYcEWG_Q' @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Add two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divide two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers.""" return a % b @tool def wiki_search(query: str) -> dict: """Search Wikipedia for a query and return maximum 2 results.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> dict: """Search Tavily for a query and return maximum 3 results.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> dict: """Search Arxiv for a query and return maximum 3 results.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ] ) return {"arvix_results": formatted_search_docs} # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # Build embeddings and vector store client embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 supabase: Client = create_client(supabase_url, supabase_key) vector_store = SupabaseVectorStore( client=supabase, embedding=embeddings, table_name="documents", query_name="match_documents_langchain", ) create_retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # Build graph function def build_graph(provider: str = "huggingface"): """Build the graph""" if provider == "google": llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "groq": llm = ChatGroq(model="qwen-qwq-32b", temperature=0) elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint(endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf"), temperature=0, ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): query = state["messages"][-1].content query_embedding = embeddings.embed_query(query) # list of floats response = supabase.rpc( 'match_documents_langchain', { 'match_count': 2, 'query_embedding': query_embedding } ).execute() docs = response.data if not docs or len(docs) == 0: answer = "Sorry, I couldn't find an answer to your question." else: content = docs[0]['content'] # get content of the first matched doc if "Final answer :" in content: answer = content.split("Final answer :")[-1].strip() else: answer = content.strip() return {"messages": [AIMessage(content=answer)]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) # If you want to integrate assistant and tools, uncomment and add edges accordingly # builder.add_node("assistant", assistant) # builder.add_node("tools", ToolNode(tools)) # builder.add_edge(START, "retriever") # builder.add_edge("retriever", "assistant") # builder.add_conditional_edges("assistant", tools_condition) # builder.add_edge("tools", "assistant") builder.set_entry_point("retriever") builder.set_finish_point("retriever") return builder.compile()