"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
supabase_url = 'https://qzydfaroejcpolxfgfim.supabase.co'
supabase_key = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InF6eWRmYXJvZWpjcG9seGZnZmltIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0OTUwNTQyMywiZXhwIjoyMDY1MDgxNDIzfQ.IBjtn1tPcogCF6DSf8dgR29aTsC61Qh0XueXYcEWG_Q'
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers."""
return a % b
@tool
def wiki_search(query: str) -> dict:
"""Search Wikipedia for a query and return maximum 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> dict:
"""Search Tavily for a query and return maximum 3 results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
]
)
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> dict:
"""Search Arxiv for a query and return maximum 3 results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
]
)
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# Build embeddings and vector store client
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(supabase_url, supabase_key)
vector_store = SupabaseVectorStore(
client=supabase,
embedding=embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf"),
temperature=0,
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
llm_with_tools = llm.bind_tools(tools)
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
query = state["messages"][-1].content
query_embedding = embeddings.embed_query(query) # list of floats
response = supabase.rpc(
'match_documents_langchain',
{
'match_count': 2,
'query_embedding': query_embedding
}
).execute()
docs = response.data
if not docs or len(docs) == 0:
answer = "Sorry, I couldn't find an answer to your question."
else:
content = docs[0]['content'] # get content of the first matched doc
if "Final answer :" in content:
answer = content.split("Final answer :")[-1].strip()
else:
answer = content.strip()
return {"messages": [AIMessage(content=answer)]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
# If you want to integrate assistant and tools, uncomment and add edges accordingly
# builder.add_node("assistant", assistant)
# builder.add_node("tools", ToolNode(tools))
# builder.add_edge(START, "retriever")
# builder.add_edge("retriever", "assistant")
# builder.add_conditional_edges("assistant", tools_condition)
# builder.add_edge("tools", "assistant")
builder.set_entry_point("retriever")
builder.set_finish_point("retriever")
return builder.compile()