File size: 4,366 Bytes
b9ebe8b
 
 
 
1152399
 
b9ebe8b
 
4ab5104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34d9eb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fad03
 
 
 
 
 
 
 
 
 
b9ebe8b
2970f7f
4ab5104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2970f7f
 
 
 
4ab5104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9ebe8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import streamlit as st
import numpy as np
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go

st.set_page_config(page_title="Plotly Graphing Libraries",layout='wide')


st.markdown("WebGL Rendering with 1,000,000 Points")
import plotly.graph_objects as go
import numpy as np
N = 1000000
fig = go.Figure()
fig.add_trace(
    go.Scattergl(
        x = np.random.randn(N),
        y = np.random.randn(N),
        mode = 'markers',
        marker = dict(
            line = dict(
                width = 1,
                color = 'DarkSlateGrey')
        )
    )
)
#fig.show()
st.plotly_chart(fig, use_container_width=True)



st.markdown("# WebGL Graph - ScatterGL")
fig = go.Figure()
trace_num = 10
point_num = 5000
for i in range(trace_num):
    fig.add_trace(
        go.Scattergl(
                x = np.linspace(0, 1, point_num),
                y = np.random.randn(point_num)+(i*5)
        )
    )
fig.update_layout(showlegend=False)
#fig.show()
st.plotly_chart(fig, use_container_width=True)


st.markdown("# Treemaps: https://plotly.com/python/treemaps/")
df = px.data.gapminder().query("year == 2007")
fig = px.treemap(df, path=[px.Constant("world"), 'continent', 'country'], values='pop',
                  color='lifeExp', hover_data=['iso_alpha'],
                  color_continuous_scale='RdBu',
                  color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
#fig.show()
st.plotly_chart(fig, use_container_width=True)


st.markdown("# Sunburst: https://plotly.com/python/sunburst-charts/")


st.markdown("# Life Expectancy Sunburst")
df = px.data.gapminder().query("year == 2007")
fig = px.sunburst(df, path=['continent', 'country'], values='pop',
                  color='lifeExp', hover_data=['iso_alpha'],
                  color_continuous_scale='RdBu',
                  color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
st.plotly_chart(fig, use_container_width=True)


st.markdown("# Coffee Aromas and Tastes Sunburst")
df1 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')
df2 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv')
fig = go.Figure()
fig.add_trace(go.Sunburst(
    ids=df1.ids,
    labels=df1.labels,
    parents=df1.parents,
    domain=dict(column=0)
))
fig.add_trace(go.Sunburst(
    ids=df2.ids,
    labels=df2.labels,
    parents=df2.parents,
    domain=dict(column=1),
    maxdepth=2
))
fig.update_layout(
    grid= dict(columns=2, rows=1),
    margin = dict(t=0, l=0, r=0, b=0)
)
st.plotly_chart(fig, use_container_width=True)





# Sunburst
#data = dict(
#    character=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
#    parent=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
#    value=[10, 14, 12, 10, 2, 6, 6, 4, 4])
#fig = px.sunburst(
#    data,
#    names='character',
#    parents='parent',
#    values='value',
#)
#fig.show()
#st.plotly_chart(fig, use_container_width=True)


df = px.data.tips()
fig = px.treemap(df, path=[px.Constant("all"), 'sex', 'day', 'time'], 
                 values='total_bill', color='time',
                  color_discrete_map={'(?)':'lightgrey', 'Lunch':'gold', 'Dinner':'darkblue'})
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
#fig.show()
fig.update_traces(marker=dict(cornerradius=5))

st.plotly_chart(fig, use_container_width=True)


df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/96c0bd/sunburst-coffee-flavors-complete.csv')
fig = go.Figure(go.Treemap(
    ids = df.ids,
    labels = df.labels,
    parents = df.parents,
    pathbar_textfont_size=15,
    root_color="lightgrey"
))
fig.update_layout(
    uniformtext=dict(minsize=10, mode='hide'),
    margin = dict(t=50, l=25, r=25, b=25)
)
#fig.show()
st.plotly_chart(fig, use_container_width=True)


df = pd.read_pickle('bloom_dataset.pkl')
fig = px.treemap(df, path=[px.Constant("ROOTS"), 'Macroarea', 'Family', 'Genus', 'Language', 'dataset_name'],
                 values='num_bytes', maxdepth=4)
fig.update_traces(root_color="pink")
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))

st.plotly_chart(fig, use_container_width=True)