import math

import torch
import numpy as np
from torch import nn
from einops import rearrange


def get_timestep_embedding(timesteps, embedding_dim):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models:
    From Fairseq.
    Build sinusoidal embeddings.
    This matches the implementation in tensor2tensor, but differs slightly
    from the description in Section 3.5 of "Attention Is All You Need".
    """
    assert len(timesteps.shape) == 1

    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb

def nonlinearity(x):
    # swish
    return x*torch.sigmoid(x)


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)



class LinearAttention(nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super().__init__()
        self.heads = heads
        hidden_dim = dim_head * heads
        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
        self.to_out = nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
        k = k.softmax(dim=-1)  
        context = torch.einsum('bhdn,bhen->bhde', k, v)
        out = torch.einsum('bhde,bhdn->bhen', context, q)
        out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
        return self.to_out(out)


class LinAttnBlock(LinearAttention):
    """to match AttnBlock usage"""
    def __init__(self, in_channels):
        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = q.reshape(b,c,h*w) # bcl
        q = q.permute(0,2,1)   # bcl -> blc l=hw
        k = k.reshape(b,c,h*w) # bcl
        
        w_ = torch.bmm(q,k)    # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b,c,h*w)
        w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b,c,h,w)

        h_ = self.proj_out(h_)

        return x+h_


def make_attn(in_channels, attn_type="vanilla"):
    assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
    print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
    if attn_type == "vanilla":
        return AttnBlock(in_channels)
    elif attn_type == "none":
        return nn.Identity(in_channels)
    else:
        return LinAttnBlock(in_channels)
 
class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        self.in_channels = in_channels
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)
    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x

class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        self.in_channels = in_channels
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x


class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels,
                                             out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels,
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
                torch.nn.Linear(self.ch,
                                self.temb_ch),
                torch.nn.Linear(self.temb_ch,
                                self.temb_ch),
            ])

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = nonlinearity(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight


class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # timestep embedding
        temb = None

        # print(f'encoder-input={x.shape}')
        # downsampling
        hs = [self.conv_in(x)]
        # print(f'encoder-conv in feat={hs[0].shape}')
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                # print(f'encoder-down feat={h.shape}')
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                # print(f'encoder-downsample (input)={hs[-1].shape}')
                hs.append(self.down[i_level].downsample(hs[-1]))
                # print(f'encoder-downsample (output)={hs[-1].shape}')

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        # print(f'encoder-mid1 feat={h.shape}')
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)
        # print(f'encoder-mid2 feat={h.shape}')

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        # print(f'end feat={h.shape}')
        return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
                 attn_type="vanilla", **ignorekwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("Working with z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(z_channels,
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # print(f'decoder-input={z.shape}')
        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)
        # print(f'decoder-conv in feat={h.shape}')

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)
        # print(f'decoder-mid feat={h.shape}')

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
                # print(f'decoder-up feat={h.shape}')
            if i_level != 0:
                h = self.up[i_level].upsample(h)
                # print(f'decoder-upsample feat={h.shape}')

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        # print(f'decoder-conv_out feat={h.shape}')
        if self.tanh_out:
            h = torch.tanh(h)
        return h