Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
fix: fix the rank issue
Browse files- src/leaderboard/read_evals.py +4 -4
- utils.py +3 -1
src/leaderboard/read_evals.py
CHANGED
@@ -68,7 +68,7 @@ class FullEvalResult:
|
|
68 |
config = item.get("config", {})
|
69 |
# eval results for different metrics
|
70 |
results = item.get("results", [])
|
71 |
-
retrieval_model_link=config["
|
72 |
if config["reranking_model_link"] is not None:
|
73 |
reranking_model_link=""
|
74 |
eval_result = EvalResult(
|
@@ -180,9 +180,9 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -
|
|
180 |
# calculate the average score for selected benchmarks
|
181 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
182 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
183 |
-
df
|
184 |
-
df.reset_index(inplace=True)
|
185 |
-
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="
|
186 |
|
187 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
188 |
df = df[_cols].round(decimals=2)
|
|
|
68 |
config = item.get("config", {})
|
69 |
# eval results for different metrics
|
70 |
results = item.get("results", [])
|
71 |
+
retrieval_model_link=config["retrieval_model_link"]
|
72 |
if config["reranking_model_link"] is not None:
|
73 |
reranking_model_link=""
|
74 |
eval_result = EvalResult(
|
|
|
180 |
# calculate the average score for selected benchmarks
|
181 |
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
|
182 |
df[COL_NAME_AVG] = df[list(_benchmark_cols)].mean(axis=1).round(decimals=2)
|
183 |
+
df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
184 |
+
df.reset_index(inplace=True, drop=True)
|
185 |
+
df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")
|
186 |
|
187 |
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
|
188 |
df = df[_cols].round(decimals=2)
|
utils.py
CHANGED
@@ -78,7 +78,9 @@ def select_columns(df: pd.DataFrame, domain_query: list, language_query: list, t
|
|
78 |
# We use COLS to maintain sorting
|
79 |
filtered_df = df[FIXED_COLS + selected_cols]
|
80 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
|
81 |
-
filtered_df
|
|
|
|
|
82 |
|
83 |
return filtered_df
|
84 |
|
|
|
78 |
# We use COLS to maintain sorting
|
79 |
filtered_df = df[FIXED_COLS + selected_cols]
|
80 |
filtered_df[COL_NAME_AVG] = filtered_df[selected_cols].mean(axis=1).round(decimals=2)
|
81 |
+
filtered_df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
|
82 |
+
filtered_df.reset_index(inplace=True, drop=True)
|
83 |
+
filtered_df[COL_NAME_RANK] = filtered_df[COL_NAME_AVG].rank(ascending=False, method="min")
|
84 |
|
85 |
return filtered_df
|
86 |
|