File size: 8,647 Bytes
c3eda24 c1683bf 6b7098d c1683bf c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf 865a9b2 c1683bf 865a9b2 c1683bf c3eda24 c1683bf c3eda24 6b7098d c3eda24 c1683bf c3eda24 c1683bf c3eda24 6b7098d c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf c3eda24 c1683bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
import numpy as np
from assets.i18n.i18n import I18nAuto
import spaces
# Colab kontrolü
try:
from google.colab import drive
IS_COLAB = True
except ImportError:
IS_COLAB = False
i18n = I18nAuto()
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights
import warnings
warnings.filterwarnings("ignore")
def shorten_filename(filename, max_length=30):
"""Dosya adını belirtilen maksimum uzunluğa kısaltır."""
base, ext = os.path.splitext(filename)
if len(base) <= max_length:
return filename
shortened = base[:15] + "..." + base[-10:] + ext
return shortened
def get_soundfile_subtype(pcm_type, is_float=False):
"""PCM türüne göre uygun soundfile alt türünü belirler."""
if is_float:
return 'FLOAT'
subtype_map = {
'PCM_16': 'PCM_16',
'PCM_24': 'PCM_24',
'FLOAT': 'FLOAT'
}
return subtype_map.get(pcm_type, 'FLOAT')
def run_folder(model, args, config, device, verbose: bool = False):
start_time = time.time()
model.eval()
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
sample_rate = getattr(config.audio, 'sample_rate', 44100)
print(i18n("total_files_found").format(len(mixture_paths), sample_rate))
instruments = prefer_target_instrument(config)[:]
# Çıktı klasörünü kullan (processing.py tarafından ayarlandı)
store_dir = args.store_dir
os.makedirs(store_dir, exist_ok=True)
if not verbose:
mixture_paths = tqdm(mixture_paths, desc=i18n("total_progress"))
else:
mixture_paths = mixture_paths
detailed_pbar = not args.disable_detailed_pbar
print(i18n("detailed_pbar_enabled").format(detailed_pbar))
for path in mixture_paths:
try:
mix, sr = librosa.load(path, sr=sample_rate, mono=False)
print(i18n("loaded_audio").format(path, mix.shape))
except Exception as e:
print(i18n("cannot_read_track").format(path))
print(i18n("error_message").format(str(e)))
continue
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mix, norm_params = normalize_audio(mix)
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)
if args.demud_phaseremix_inst:
print(i18n("demudding_track").format(path))
instr = 'vocals' if 'vocals' in instruments else instruments[0]
instruments.append('instrumental_phaseremix')
if 'instrumental' not in instruments and 'Instrumental' not in instruments:
mix_modified = mix_orig - 2*waveforms_orig[instr]
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr]
else:
mix_modified = 2*waveforms_orig[instr] - mix_orig
mix_modified_ = mix_modified.copy()
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar)
if args.use_tta:
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type)
waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr]
if args.extract_instrumental:
instr = 'vocals' if 'vocals' in instruments else instruments[0]
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
if 'instrumental' not in instruments:
instruments.append('instrumental')
for instr in instruments:
estimates = waveforms_orig[instr]
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = denormalize_audio(estimates, norm_params)
is_float = getattr(args, 'export_format', '').startswith('wav FLOAT')
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
if codec == 'flac':
subtype = get_soundfile_subtype(args.pcm_type, is_float)
else:
subtype = get_soundfile_subtype('FLOAT', is_float)
shortened_filename = shorten_filename(os.path.basename(path))
output_filename = f"{shortened_filename}_{instr}.{codec}"
output_path = os.path.join(store_dir, output_filename)
sf.write(output_path, estimates.T, sr, subtype=subtype)
print(i18n("elapsed_time").format(time.time() - start_time))
@spaces.GPU
def proc_folder(args):
parser = argparse.ArgumentParser(description=i18n("proc_folder_description"))
parser.add_argument("--model_type", type=str, default='mdx23c', help=i18n("model_type_help"))
parser.add_argument("--config_path", type=str, help=i18n("config_path_help"))
parser.add_argument("--demud_phaseremix_inst", action='store_true', help=i18n("demud_phaseremix_help"))
parser.add_argument("--start_check_point", type=str, default='', help=i18n("start_checkpoint_help"))
parser.add_argument("--input_folder", type=str, help=i18n("input_folder_help"))
parser.add_argument("--audio_path", type=str, help=i18n("audio_path_help"))
parser.add_argument("--store_dir", type=str, default="", help=i18n("store_dir_help"))
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help=i18n("device_ids_help"))
parser.add_argument("--extract_instrumental", action='store_true', help=i18n("extract_instrumental_help"))
parser.add_argument("--disable_detailed_pbar", action='store_true', help=i18n("disable_detailed_pbar_help"))
parser.add_argument("--force_cpu", action='store_true', help=i18n("force_cpu_help"))
parser.add_argument("--flac_file", action='store_true', help=i18n("flac_file_help"))
parser.add_argument("--export_format", type=str, choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], default='flac PCM_24', help=i18n("export_format_help"))
parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24', help=i18n("pcm_type_help"))
parser.add_argument("--use_tta", action='store_true', help=i18n("use_tta_help"))
parser.add_argument("--lora_checkpoint", type=str, default='', help=i18n("lora_checkpoint_help"))
parser.add_argument("--chunk_size", type=int, default=1000000, help="Inference chunk size")
parser.add_argument("--overlap", type=int, default=4, help="Inference overlap factor")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
device = "cpu"
if args.force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print(i18n("cuda_available"))
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
elif torch.backends.mps.is_available():
device = "mps"
print(i18n("using_device").format(device))
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
load_start_checkpoint(args, model, type_='inference')
print(i18n("instruments_print").format(config.training.instruments))
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
model = nn.DataParallel(model, device_ids=args.device_ids)
model = model.to(device)
print(i18n("model_load_time").format(time.time() - model_load_start_time))
run_folder(model, args, config, device, verbose=False)
if __name__ == "__main__":
proc_folder(None)
|