File size: 15,823 Bytes
c1683bf
3978e51
c1683bf
 
 
 
 
 
 
3978e51
 
c1683bf
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
c1683bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978e51
 
c1683bf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python3
# coding: utf-8
"""
Ultimate Audio Ensemble Processor v4.0
- Tüm ensemble yöntemlerini destekler (avg_wave, median_wave, max_wave, min_wave, max_fft, min_fft, median_fft)
- Özel karakterli ve uzun dosya yollarını destekler
- Büyük dosyaları verimli şekilde işler
- Detaylı hata yönetimi ve loglama
"""

import os
import sys
import argparse
import numpy as np
import soundfile as sf
import librosa
import psutil
import gc
import traceback
from scipy.signal import stft, istft
from pathlib import Path
import tempfile
import shutil
import json
from tqdm import tqdm
import time

class AudioEnsembleEngine:
    def __init__(self):
        self.temp_dir = None
        self.log_file = "ensemble_processor.log"
        
    def __enter__(self):
        self.temp_dir = tempfile.mkdtemp(prefix='audio_ensemble_')
        self.setup_logging()
        return self
        
    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.temp_dir and os.path.exists(self.temp_dir):
            shutil.rmtree(self.temp_dir, ignore_errors=True)
    
    def setup_logging(self):
        """Initialize detailed logging system."""
        with open(self.log_file, 'w') as f:
            f.write("Audio Ensemble Processor Log\n")
            f.write("="*50 + "\n")
            f.write(f"System Memory: {psutil.virtual_memory().total/(1024**3):.2f} GB\n")
            f.write(f"Python Version: {sys.version}\n\n")
    
    def log_message(self, message):
        """Log messages with timestamp."""
        with open(self.log_file, 'a') as f:
            f.write(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}\n")
    
    def normalize_path(self, path):
        """Handle all path-related issues comprehensively."""
        try:
            # Convert to absolute path
            path = str(Path(path).absolute().resolve())
            
            # Handle problematic characters
            if any(char in path for char in '[]()|&; '):
                base, ext = os.path.splitext(path)
                safe_name = f"{hash(base)}{ext}"
                temp_path = os.path.join(self.temp_dir, safe_name)
                
                if not os.path.exists(temp_path):
                    data, sr = librosa.load(path, sr=None, mono=False)
                    sf.write(temp_path, data.T, sr)
                
                return temp_path
            
            return path
        except Exception as e:
            self.log_message(f"Path normalization failed: {str(e)}")
            return path
    
    def validate_inputs(self, files, method, output_path):
        """Comprehensive input validation with detailed error reporting."""
        errors = []
        valid_methods = [
            'avg_wave', 'median_wave', 'max_wave', 'min_wave',
            'max_fft', 'min_fft', 'median_fft'
        ]
        
        # Method validation
        if method not in valid_methods:
            errors.append(f"Invalid method '{method}'. Available: {valid_methods}")
        
        # File validation
        valid_files = []
        sample_rates = set()
        durations = []
        channels_set = set()
        
        for f in files:
            try:
                f_normalized = self.normalize_path(f)
                
                # Basic checks
                if not os.path.exists(f_normalized):
                    errors.append(f"File not found: {f_normalized}")
                    continue
                
                if os.path.getsize(f_normalized) == 0:
                    errors.append(f"Empty file: {f_normalized}")
                    continue
                
                # Audio file validation
                try:
                    with sf.SoundFile(f_normalized) as sf_file:
                        sr = sf_file.samplerate
                        frames = sf_file.frames
                        channels = sf_file.channels
                except Exception as e:
                    errors.append(f"Invalid audio file {f_normalized}: {str(e)}")
                    continue
                
                # Audio characteristics
                if channels != 2:
                    errors.append(f"File must be stereo (has {channels} channels): {f_normalized}")
                    continue
                
                sample_rates.add(sr)
                durations.append(frames / sr)
                channels_set.add(channels)
                valid_files.append(f_normalized)
                
            except Exception as e:
                errors.append(f"Error processing {f}: {str(e)}")
                continue
        
        # Final checks
        if len(valid_files) < 2:
            errors.append("At least 2 valid files required")
        
        if len(sample_rates) > 1:
            errors.append(f"Sample rate mismatch: {sample_rates}")
        
        if len(channels_set) > 1:
            errors.append(f"Channel count mismatch: {channels_set}")
        
        # Output path validation
        try:
            output_path = self.normalize_path(output_path)
            output_dir = os.path.dirname(output_path) or '.'
            
            if not os.path.exists(output_dir):
                os.makedirs(output_dir, exist_ok=True)
            
            if not os.access(output_dir, os.W_OK):
                errors.append(f"No write permission for output directory: {output_dir}")
        except Exception as e:
            errors.append(f"Output path error: {str(e)}")
        
        if errors:
            error_msg = "\n".join(errors)
            self.log_message(f"Validation failed:\n{error_msg}")
            raise ValueError(error_msg)
        
        target_sr = sample_rates.pop() if sample_rates else 44100
        return valid_files, target_sr, min(durations) if durations else None
    
    def process_waveform(self, chunks, method, weights=None):
        """All waveform domain processing methods."""
        if method == 'avg_wave':
            if weights is not None:
                return np.average(chunks, axis=0, weights=weights)
            return np.mean(chunks, axis=0)
        elif method == 'median_wave':
            return np.median(chunks, axis=0)
        elif method == 'max_wave':
            return np.max(chunks, axis=0)
        elif method == 'min_wave':
            return np.min(chunks, axis=0)
    
    def process_spectral(self, chunks, method):
        """All frequency domain processing methods."""
        specs = []
        min_samples = min(chunk.shape[1] for chunk in chunks)
        nperseg = min(1024, min_samples)  # Adjust nperseg to fit shortest chunk
        noverlap = nperseg // 2
        self.log_message(f"STFT parameters: nperseg={nperseg}, noverlap={noverlap}, min_samples={min_samples}")

        for c in chunks:
            # Truncate chunk to minimum length to ensure consistent STFT shapes
            c = c[:, :min_samples]
            channel_specs = []
            for channel in range(c.shape[0]):
                if c.shape[1] < 256:  # Minimum reasonable length for STFT
                    self.log_message(f"Warning: Chunk too short ({c.shape[1]} samples) for STFT. Skipping.")
                    return None
                try:
                    freqs, times, Zxx = stft(
                        c[channel],
                        nperseg=nperseg,
                        noverlap=noverlap,
                        window='hann'
                    )
                    channel_specs.append(Zxx)
                except Exception as e:
                    self.log_message(f"STFT failed for channel: {str(e)}")
                    return None
            specs.append(np.array(channel_specs))
        
        if not specs:
            self.log_message("No valid STFTs computed.")
            return None

        specs = np.array(specs)
        self.log_message(f"STFT shapes: {[spec.shape for spec in specs]}")
        
        # Ensure all STFTs have the same shape
        min_freqs = min(spec.shape[1] for spec in specs)
        min_times = min(spec.shape[2] for spec in specs)
        specs = np.array([spec[:, :min_freqs, :min_times] for spec in specs])
        
        mag = np.abs(specs)
        
        if method == 'max_fft':
            combined_mag = np.max(mag, axis=0)
        elif method == 'min_fft':
            combined_mag = np.min(mag, axis=0)
        elif method == 'median_fft':
            combined_mag = np.median(mag, axis=0)
        
        # Use phase from first file
        combined_spec = combined_mag * np.exp(1j * np.angle(specs[0]))
        
        # ISTFT reconstruction
        reconstructed = np.zeros((combined_spec.shape[0], chunks[0].shape[1]))
        for channel in range(combined_spec.shape[0]):
            try:
                _, xrec = istft(
                    combined_spec[channel],
                    nperseg=nperseg,
                    noverlap=noverlap,
                    window='hann'
                )
                # Truncate or pad to match original chunk length
                if xrec.shape[0] < chunks[0].shape[1]:
                    xrec = np.pad(xrec, (0, chunks[0].shape[1] - xrec.shape[0]), mode='constant')
                reconstructed[channel] = xrec[:chunks[0].shape[1]]
            except Exception as e:
                self.log_message(f"ISTFT failed for channel: {str(e)}")
                return None
        
        return reconstructed
    
    def run_ensemble(self, files, method, output_path, weights=None, buffer_size=32768):
        """Core ensemble processing with maximum robustness."""
        try:
            # Validate and prepare inputs
            valid_files, target_sr, duration = self.validate_inputs(files, method, output_path)
            output_path = self.normalize_path(output_path)
            
            self.log_message(f"Starting ensemble with method: {method}")
            self.log_message(f"Input files: {json.dumps(valid_files, indent=2)}")
            self.log_message(f"Target sample rate: {target_sr}Hz")
            self.log_message(f"Output path: {output_path}")
            
            # Ensure output directory exists
            output_dir = os.path.dirname(output_path) or '.'
            os.makedirs(output_dir, exist_ok=True)
            self.log_message(f"Output directory created/verified: {output_dir}")
            
            # Verify write permissions
            try:
                test_file = os.path.join(output_dir, "test_write.txt")
                with open(test_file, "w") as f:
                    f.write("Test")
                os.remove(test_file)
                self.log_message(f"Write permissions verified for: {output_dir}")
            except Exception as e:
                self.log_message(f"Write permission error for {output_dir}: {str(e)}")
                raise ValueError(f"Cannot write to output directory {output_dir}: {str(e)}")
            
            # Prepare weights
            if weights and len(weights) == len(valid_files):
                weights = np.array(weights, dtype=np.float32)
                weights /= weights.sum()  # Normalize
                self.log_message(f"Using weights: {weights}")
            else:
                weights = None
            
            # Open all files
            readers = []
            try:
                readers = [sf.SoundFile(f) for f in valid_files]
                shortest_frames = min(int(duration * r.samplerate) for r in readers)
                
                # Prepare output
                self.log_message(f"Opening output file for writing: {output_path}")
                with sf.SoundFile(output_path, 'w', target_sr, 2, 'PCM_24') as outfile:
                    # Process in chunks with progress bar
                    progress = tqdm(total=shortest_frames, unit='samples', desc='Processing')
                    
                    for pos in range(0, shortest_frames, buffer_size):
                        chunk_size = min(buffer_size, shortest_frames - pos)
                        
                        # Read aligned chunks from all files
                        chunks = []
                        for r in readers:
                            r.seek(pos)
                            data = r.read(chunk_size)
                            if data.size == 0:
                                data = np.zeros((chunk_size, 2))
                            chunks.append(data.T)  # Transpose to (channels, samples)
                        
                        chunks = np.array(chunks)
                        self.log_message(f"Chunk shape: {chunks.shape}, pos={pos}")
                        
                        # Process based on method type
                        if method.endswith('_fft'):
                            result = self.process_spectral(chunks, method)
                            if result is None:
                                self.log_message("Spectral processing failed, falling back to avg_wave")
                                result = self.process_waveform(chunks, 'avg_wave', weights)
                        else:
                            result = self.process_waveform(chunks, method, weights)
                        
                        # Write output
                        outfile.write(result.T)  # Transpose back to (samples, channels)
                        
                        # Clean up and update progress
                        del chunks, result
                        if pos % (5 * buffer_size) == 0:
                            gc.collect()
                        
                        progress.update(chunk_size)
                    
                    progress.close()
                
                self.log_message(f"Successfully created output: {output_path}")
                print(f"\nEnsemble completed successfully: {output_path}")
                return True
                
            except Exception as e:
                self.log_message(f"Processing error: {str(e)}\n{traceback.format_exc()}")
                raise
            finally:
                for r in readers:
                    try:
                        r.close()
                    except:
                        pass
                
        except Exception as e:
            self.log_message(f"Fatal error: {str(e)}\n{traceback.format_exc()}")
            print(f"\nError during processing: {str(e)}", file=sys.stderr)
            return False

def main():
    parser = argparse.ArgumentParser(
        description='Ultimate Audio Ensemble Processor - Supports all ensemble methods',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument('--files', nargs='+', required=True,
                       help='Input audio files (supports special characters)')
    parser.add_argument('--type', required=True,
                       choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave',
                               'max_fft', 'min_fft', 'median_fft'],
                       help='Ensemble method to use')
    parser.add_argument('--weights', nargs='+', type=float,
                       help='Relative weights for each input file')
    parser.add_argument('--output', required=True,
                       help='Output file path')
    parser.add_argument('--buffer', type=int, default=32768,
                       help='Buffer size in samples (larger=faster but uses more memory)')
    
    args = parser.parse_args()
    
    with AudioEnsembleEngine() as engine:
        success = engine.run_ensemble(
            files=args.files,
            method=args.type,
            output_path=args.output,
            weights=args.weights,
            buffer_size=args.buffer
        )
    
    sys.exit(0 if success else 1)

if __name__ == "__main__":
    import time
    main()