File size: 15,823 Bytes
c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf 3978e51 c1683bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
#!/usr/bin/env python3
# coding: utf-8
"""
Ultimate Audio Ensemble Processor v4.0
- Tüm ensemble yöntemlerini destekler (avg_wave, median_wave, max_wave, min_wave, max_fft, min_fft, median_fft)
- Özel karakterli ve uzun dosya yollarını destekler
- Büyük dosyaları verimli şekilde işler
- Detaylı hata yönetimi ve loglama
"""
import os
import sys
import argparse
import numpy as np
import soundfile as sf
import librosa
import psutil
import gc
import traceback
from scipy.signal import stft, istft
from pathlib import Path
import tempfile
import shutil
import json
from tqdm import tqdm
import time
class AudioEnsembleEngine:
def __init__(self):
self.temp_dir = None
self.log_file = "ensemble_processor.log"
def __enter__(self):
self.temp_dir = tempfile.mkdtemp(prefix='audio_ensemble_')
self.setup_logging()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.temp_dir and os.path.exists(self.temp_dir):
shutil.rmtree(self.temp_dir, ignore_errors=True)
def setup_logging(self):
"""Initialize detailed logging system."""
with open(self.log_file, 'w') as f:
f.write("Audio Ensemble Processor Log\n")
f.write("="*50 + "\n")
f.write(f"System Memory: {psutil.virtual_memory().total/(1024**3):.2f} GB\n")
f.write(f"Python Version: {sys.version}\n\n")
def log_message(self, message):
"""Log messages with timestamp."""
with open(self.log_file, 'a') as f:
f.write(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}\n")
def normalize_path(self, path):
"""Handle all path-related issues comprehensively."""
try:
# Convert to absolute path
path = str(Path(path).absolute().resolve())
# Handle problematic characters
if any(char in path for char in '[]()|&; '):
base, ext = os.path.splitext(path)
safe_name = f"{hash(base)}{ext}"
temp_path = os.path.join(self.temp_dir, safe_name)
if not os.path.exists(temp_path):
data, sr = librosa.load(path, sr=None, mono=False)
sf.write(temp_path, data.T, sr)
return temp_path
return path
except Exception as e:
self.log_message(f"Path normalization failed: {str(e)}")
return path
def validate_inputs(self, files, method, output_path):
"""Comprehensive input validation with detailed error reporting."""
errors = []
valid_methods = [
'avg_wave', 'median_wave', 'max_wave', 'min_wave',
'max_fft', 'min_fft', 'median_fft'
]
# Method validation
if method not in valid_methods:
errors.append(f"Invalid method '{method}'. Available: {valid_methods}")
# File validation
valid_files = []
sample_rates = set()
durations = []
channels_set = set()
for f in files:
try:
f_normalized = self.normalize_path(f)
# Basic checks
if not os.path.exists(f_normalized):
errors.append(f"File not found: {f_normalized}")
continue
if os.path.getsize(f_normalized) == 0:
errors.append(f"Empty file: {f_normalized}")
continue
# Audio file validation
try:
with sf.SoundFile(f_normalized) as sf_file:
sr = sf_file.samplerate
frames = sf_file.frames
channels = sf_file.channels
except Exception as e:
errors.append(f"Invalid audio file {f_normalized}: {str(e)}")
continue
# Audio characteristics
if channels != 2:
errors.append(f"File must be stereo (has {channels} channels): {f_normalized}")
continue
sample_rates.add(sr)
durations.append(frames / sr)
channels_set.add(channels)
valid_files.append(f_normalized)
except Exception as e:
errors.append(f"Error processing {f}: {str(e)}")
continue
# Final checks
if len(valid_files) < 2:
errors.append("At least 2 valid files required")
if len(sample_rates) > 1:
errors.append(f"Sample rate mismatch: {sample_rates}")
if len(channels_set) > 1:
errors.append(f"Channel count mismatch: {channels_set}")
# Output path validation
try:
output_path = self.normalize_path(output_path)
output_dir = os.path.dirname(output_path) or '.'
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
if not os.access(output_dir, os.W_OK):
errors.append(f"No write permission for output directory: {output_dir}")
except Exception as e:
errors.append(f"Output path error: {str(e)}")
if errors:
error_msg = "\n".join(errors)
self.log_message(f"Validation failed:\n{error_msg}")
raise ValueError(error_msg)
target_sr = sample_rates.pop() if sample_rates else 44100
return valid_files, target_sr, min(durations) if durations else None
def process_waveform(self, chunks, method, weights=None):
"""All waveform domain processing methods."""
if method == 'avg_wave':
if weights is not None:
return np.average(chunks, axis=0, weights=weights)
return np.mean(chunks, axis=0)
elif method == 'median_wave':
return np.median(chunks, axis=0)
elif method == 'max_wave':
return np.max(chunks, axis=0)
elif method == 'min_wave':
return np.min(chunks, axis=0)
def process_spectral(self, chunks, method):
"""All frequency domain processing methods."""
specs = []
min_samples = min(chunk.shape[1] for chunk in chunks)
nperseg = min(1024, min_samples) # Adjust nperseg to fit shortest chunk
noverlap = nperseg // 2
self.log_message(f"STFT parameters: nperseg={nperseg}, noverlap={noverlap}, min_samples={min_samples}")
for c in chunks:
# Truncate chunk to minimum length to ensure consistent STFT shapes
c = c[:, :min_samples]
channel_specs = []
for channel in range(c.shape[0]):
if c.shape[1] < 256: # Minimum reasonable length for STFT
self.log_message(f"Warning: Chunk too short ({c.shape[1]} samples) for STFT. Skipping.")
return None
try:
freqs, times, Zxx = stft(
c[channel],
nperseg=nperseg,
noverlap=noverlap,
window='hann'
)
channel_specs.append(Zxx)
except Exception as e:
self.log_message(f"STFT failed for channel: {str(e)}")
return None
specs.append(np.array(channel_specs))
if not specs:
self.log_message("No valid STFTs computed.")
return None
specs = np.array(specs)
self.log_message(f"STFT shapes: {[spec.shape for spec in specs]}")
# Ensure all STFTs have the same shape
min_freqs = min(spec.shape[1] for spec in specs)
min_times = min(spec.shape[2] for spec in specs)
specs = np.array([spec[:, :min_freqs, :min_times] for spec in specs])
mag = np.abs(specs)
if method == 'max_fft':
combined_mag = np.max(mag, axis=0)
elif method == 'min_fft':
combined_mag = np.min(mag, axis=0)
elif method == 'median_fft':
combined_mag = np.median(mag, axis=0)
# Use phase from first file
combined_spec = combined_mag * np.exp(1j * np.angle(specs[0]))
# ISTFT reconstruction
reconstructed = np.zeros((combined_spec.shape[0], chunks[0].shape[1]))
for channel in range(combined_spec.shape[0]):
try:
_, xrec = istft(
combined_spec[channel],
nperseg=nperseg,
noverlap=noverlap,
window='hann'
)
# Truncate or pad to match original chunk length
if xrec.shape[0] < chunks[0].shape[1]:
xrec = np.pad(xrec, (0, chunks[0].shape[1] - xrec.shape[0]), mode='constant')
reconstructed[channel] = xrec[:chunks[0].shape[1]]
except Exception as e:
self.log_message(f"ISTFT failed for channel: {str(e)}")
return None
return reconstructed
def run_ensemble(self, files, method, output_path, weights=None, buffer_size=32768):
"""Core ensemble processing with maximum robustness."""
try:
# Validate and prepare inputs
valid_files, target_sr, duration = self.validate_inputs(files, method, output_path)
output_path = self.normalize_path(output_path)
self.log_message(f"Starting ensemble with method: {method}")
self.log_message(f"Input files: {json.dumps(valid_files, indent=2)}")
self.log_message(f"Target sample rate: {target_sr}Hz")
self.log_message(f"Output path: {output_path}")
# Ensure output directory exists
output_dir = os.path.dirname(output_path) or '.'
os.makedirs(output_dir, exist_ok=True)
self.log_message(f"Output directory created/verified: {output_dir}")
# Verify write permissions
try:
test_file = os.path.join(output_dir, "test_write.txt")
with open(test_file, "w") as f:
f.write("Test")
os.remove(test_file)
self.log_message(f"Write permissions verified for: {output_dir}")
except Exception as e:
self.log_message(f"Write permission error for {output_dir}: {str(e)}")
raise ValueError(f"Cannot write to output directory {output_dir}: {str(e)}")
# Prepare weights
if weights and len(weights) == len(valid_files):
weights = np.array(weights, dtype=np.float32)
weights /= weights.sum() # Normalize
self.log_message(f"Using weights: {weights}")
else:
weights = None
# Open all files
readers = []
try:
readers = [sf.SoundFile(f) for f in valid_files]
shortest_frames = min(int(duration * r.samplerate) for r in readers)
# Prepare output
self.log_message(f"Opening output file for writing: {output_path}")
with sf.SoundFile(output_path, 'w', target_sr, 2, 'PCM_24') as outfile:
# Process in chunks with progress bar
progress = tqdm(total=shortest_frames, unit='samples', desc='Processing')
for pos in range(0, shortest_frames, buffer_size):
chunk_size = min(buffer_size, shortest_frames - pos)
# Read aligned chunks from all files
chunks = []
for r in readers:
r.seek(pos)
data = r.read(chunk_size)
if data.size == 0:
data = np.zeros((chunk_size, 2))
chunks.append(data.T) # Transpose to (channels, samples)
chunks = np.array(chunks)
self.log_message(f"Chunk shape: {chunks.shape}, pos={pos}")
# Process based on method type
if method.endswith('_fft'):
result = self.process_spectral(chunks, method)
if result is None:
self.log_message("Spectral processing failed, falling back to avg_wave")
result = self.process_waveform(chunks, 'avg_wave', weights)
else:
result = self.process_waveform(chunks, method, weights)
# Write output
outfile.write(result.T) # Transpose back to (samples, channels)
# Clean up and update progress
del chunks, result
if pos % (5 * buffer_size) == 0:
gc.collect()
progress.update(chunk_size)
progress.close()
self.log_message(f"Successfully created output: {output_path}")
print(f"\nEnsemble completed successfully: {output_path}")
return True
except Exception as e:
self.log_message(f"Processing error: {str(e)}\n{traceback.format_exc()}")
raise
finally:
for r in readers:
try:
r.close()
except:
pass
except Exception as e:
self.log_message(f"Fatal error: {str(e)}\n{traceback.format_exc()}")
print(f"\nError during processing: {str(e)}", file=sys.stderr)
return False
def main():
parser = argparse.ArgumentParser(
description='Ultimate Audio Ensemble Processor - Supports all ensemble methods',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--files', nargs='+', required=True,
help='Input audio files (supports special characters)')
parser.add_argument('--type', required=True,
choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave',
'max_fft', 'min_fft', 'median_fft'],
help='Ensemble method to use')
parser.add_argument('--weights', nargs='+', type=float,
help='Relative weights for each input file')
parser.add_argument('--output', required=True,
help='Output file path')
parser.add_argument('--buffer', type=int, default=32768,
help='Buffer size in samples (larger=faster but uses more memory)')
args = parser.parse_args()
with AudioEnsembleEngine() as engine:
success = engine.run_ensemble(
files=args.files,
method=args.type,
output_path=args.output,
weights=args.weights,
buffer_size=args.buffer
)
sys.exit(0 if success else 1)
if __name__ == "__main__":
import time
main()
|