Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torchseg as smp | |
from utils import prefer_target_instrument | |
class STFT: | |
def __init__(self, config): | |
self.n_fft = config.n_fft | |
self.hop_length = config.hop_length | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True) | |
self.dim_f = config.dim_f | |
def __call__(self, x): | |
window = self.window.to(x.device) | |
batch_dims = x.shape[:-2] | |
c, t = x.shape[-2:] | |
x = x.reshape([-1, t]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
window=window, | |
center=True, | |
return_complex=True | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]]) | |
return x[..., :self.dim_f, :] | |
def inverse(self, x): | |
window = self.window.to(x.device) | |
batch_dims = x.shape[:-3] | |
c, f, t = x.shape[-3:] | |
n = self.n_fft // 2 + 1 | |
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device) | |
x = torch.cat([x, f_pad], -2) | |
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t]) | |
x = x.permute([0, 2, 3, 1]) | |
x = x[..., 0] + x[..., 1] * 1.j | |
x = torch.istft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
window=window, | |
center=True | |
) | |
x = x.reshape([*batch_dims, 2, -1]) | |
return x | |
def get_act(act_type): | |
if act_type == 'gelu': | |
return nn.GELU() | |
elif act_type == 'relu': | |
return nn.ReLU() | |
elif act_type[:3] == 'elu': | |
alpha = float(act_type.replace('elu', '')) | |
return nn.ELU(alpha) | |
else: | |
raise Exception | |
def get_decoder(config, c): | |
decoder = None | |
decoder_options = dict() | |
if config.model.decoder_type == 'unet': | |
try: | |
decoder_options = dict(config.decoder_unet) | |
except: | |
pass | |
decoder = smp.Unet( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'fpn': | |
try: | |
decoder_options = dict(config.decoder_fpn) | |
except: | |
pass | |
decoder = smp.FPN( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'unet++': | |
try: | |
decoder_options = dict(config.decoder_unet_plus_plus) | |
except: | |
pass | |
decoder = smp.UnetPlusPlus( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'manet': | |
try: | |
decoder_options = dict(config.decoder_manet) | |
except: | |
pass | |
decoder = smp.MAnet( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'linknet': | |
try: | |
decoder_options = dict(config.decoder_linknet) | |
except: | |
pass | |
decoder = smp.Linknet( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'pspnet': | |
try: | |
decoder_options = dict(config.decoder_pspnet) | |
except: | |
pass | |
decoder = smp.PSPNet( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'pspnet': | |
try: | |
decoder_options = dict(config.decoder_pspnet) | |
except: | |
pass | |
decoder = smp.PSPNet( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'pan': | |
try: | |
decoder_options = dict(config.decoder_pan) | |
except: | |
pass | |
decoder = smp.PAN( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'deeplabv3': | |
try: | |
decoder_options = dict(config.decoder_deeplabv3) | |
except: | |
pass | |
decoder = smp.DeepLabV3( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
elif config.model.decoder_type == 'deeplabv3plus': | |
try: | |
decoder_options = dict(config.decoder_deeplabv3plus) | |
except: | |
pass | |
decoder = smp.DeepLabV3Plus( | |
encoder_name=config.model.encoder_name, | |
encoder_weights="imagenet", | |
in_channels=c, | |
classes=c, | |
**decoder_options, | |
) | |
return decoder | |
class Torchseg_Net(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
act = get_act(act_type=config.model.act) | |
self.num_target_instruments = len(prefer_target_instrument(config)) | |
self.num_subbands = config.model.num_subbands | |
dim_c = self.num_subbands * config.audio.num_channels * 2 | |
c = config.model.num_channels | |
f = config.audio.dim_f // self.num_subbands | |
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False) | |
self.unet_model = get_decoder(config, c) | |
self.final_conv = nn.Sequential( | |
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), | |
act, | |
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False) | |
) | |
self.stft = STFT(config.audio) | |
def cac2cws(self, x): | |
k = self.num_subbands | |
b, c, f, t = x.shape | |
x = x.reshape(b, c, k, f // k, t) | |
x = x.reshape(b, c * k, f // k, t) | |
return x | |
def cws2cac(self, x): | |
k = self.num_subbands | |
b, c, f, t = x.shape | |
x = x.reshape(b, c // k, k, f, t) | |
x = x.reshape(b, c // k, f * k, t) | |
return x | |
def forward(self, x): | |
x = self.stft(x) | |
mix = x = self.cac2cws(x) | |
first_conv_out = x = self.first_conv(x) | |
x = x.transpose(-1, -2) | |
x = self.unet_model(x) | |
x = x.transpose(-1, -2) | |
x = x * first_conv_out # reduce artifacts | |
x = self.final_conv(torch.cat([mix, x], 1)) | |
x = self.cws2cac(x) | |
if self.num_target_instruments > 1: | |
b, c, f, t = x.shape | |
x = x.reshape(b, self.num_target_instruments, -1, f, t) | |
x = self.stft.inverse(x) | |
return x | |