Spaces:
Running
on
Zero
Running
on
Zero
from functools import partial | |
import torch | |
import torch.nn as nn | |
from transformers import UperNetForSemanticSegmentation | |
from utils import prefer_target_instrument | |
class STFT: | |
def __init__(self, config): | |
self.n_fft = config.n_fft | |
self.hop_length = config.hop_length | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True) | |
self.dim_f = config.dim_f | |
def __call__(self, x): | |
window = self.window.to(x.device) | |
batch_dims = x.shape[:-2] | |
c, t = x.shape[-2:] | |
x = x.reshape([-1, t]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
window=window, | |
center=True, | |
return_complex=True | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([*batch_dims, c, 2, -1, x.shape[-1]]).reshape([*batch_dims, c * 2, -1, x.shape[-1]]) | |
return x[..., :self.dim_f, :] | |
def inverse(self, x): | |
window = self.window.to(x.device) | |
batch_dims = x.shape[:-3] | |
c, f, t = x.shape[-3:] | |
n = self.n_fft // 2 + 1 | |
f_pad = torch.zeros([*batch_dims, c, n - f, t]).to(x.device) | |
x = torch.cat([x, f_pad], -2) | |
x = x.reshape([*batch_dims, c // 2, 2, n, t]).reshape([-1, 2, n, t]) | |
x = x.permute([0, 2, 3, 1]) | |
x = x[..., 0] + x[..., 1] * 1.j | |
x = torch.istft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
window=window, | |
center=True | |
) | |
x = x.reshape([*batch_dims, 2, -1]) | |
return x | |
def get_norm(norm_type): | |
def norm(c, norm_type): | |
if norm_type == 'BatchNorm': | |
return nn.BatchNorm2d(c) | |
elif norm_type == 'InstanceNorm': | |
return nn.InstanceNorm2d(c, affine=True) | |
elif 'GroupNorm' in norm_type: | |
g = int(norm_type.replace('GroupNorm', '')) | |
return nn.GroupNorm(num_groups=g, num_channels=c) | |
else: | |
return nn.Identity() | |
return partial(norm, norm_type=norm_type) | |
def get_act(act_type): | |
if act_type == 'gelu': | |
return nn.GELU() | |
elif act_type == 'relu': | |
return nn.ReLU() | |
elif act_type[:3] == 'elu': | |
alpha = float(act_type.replace('elu', '')) | |
return nn.ELU(alpha) | |
else: | |
raise Exception | |
class Upscale(nn.Module): | |
def __init__(self, in_c, out_c, scale, norm, act): | |
super().__init__() | |
self.conv = nn.Sequential( | |
norm(in_c), | |
act, | |
nn.ConvTranspose2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class Downscale(nn.Module): | |
def __init__(self, in_c, out_c, scale, norm, act): | |
super().__init__() | |
self.conv = nn.Sequential( | |
norm(in_c), | |
act, | |
nn.Conv2d(in_channels=in_c, out_channels=out_c, kernel_size=scale, stride=scale, bias=False) | |
) | |
def forward(self, x): | |
return self.conv(x) | |
class TFC_TDF(nn.Module): | |
def __init__(self, in_c, c, l, f, bn, norm, act): | |
super().__init__() | |
self.blocks = nn.ModuleList() | |
for i in range(l): | |
block = nn.Module() | |
block.tfc1 = nn.Sequential( | |
norm(in_c), | |
act, | |
nn.Conv2d(in_c, c, 3, 1, 1, bias=False), | |
) | |
block.tdf = nn.Sequential( | |
norm(c), | |
act, | |
nn.Linear(f, f // bn, bias=False), | |
norm(c), | |
act, | |
nn.Linear(f // bn, f, bias=False), | |
) | |
block.tfc2 = nn.Sequential( | |
norm(c), | |
act, | |
nn.Conv2d(c, c, 3, 1, 1, bias=False), | |
) | |
block.shortcut = nn.Conv2d(in_c, c, 1, 1, 0, bias=False) | |
self.blocks.append(block) | |
in_c = c | |
def forward(self, x): | |
for block in self.blocks: | |
s = block.shortcut(x) | |
x = block.tfc1(x) | |
x = x + block.tdf(x) | |
x = block.tfc2(x) | |
x = x + s | |
return x | |
class Swin_UperNet_Model(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
act = get_act(act_type=config.model.act) | |
self.num_target_instruments = len(prefer_target_instrument(config)) | |
self.num_subbands = config.model.num_subbands | |
dim_c = self.num_subbands * config.audio.num_channels * 2 | |
c = config.model.num_channels | |
f = config.audio.dim_f // self.num_subbands | |
self.first_conv = nn.Conv2d(dim_c, c, 1, 1, 0, bias=False) | |
self.swin_upernet_model = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-large") | |
self.swin_upernet_model.auxiliary_head.classifier = nn.Conv2d(256, c, kernel_size=(1, 1), stride=(1, 1)) | |
self.swin_upernet_model.decode_head.classifier = nn.Conv2d(512, c, kernel_size=(1, 1), stride=(1, 1)) | |
self.swin_upernet_model.backbone.embeddings.patch_embeddings.projection = nn.Conv2d(c, 192, kernel_size=(4, 4), stride=(4, 4)) | |
self.final_conv = nn.Sequential( | |
nn.Conv2d(c + dim_c, c, 1, 1, 0, bias=False), | |
act, | |
nn.Conv2d(c, self.num_target_instruments * dim_c, 1, 1, 0, bias=False) | |
) | |
self.stft = STFT(config.audio) | |
def cac2cws(self, x): | |
k = self.num_subbands | |
b, c, f, t = x.shape | |
x = x.reshape(b, c, k, f // k, t) | |
x = x.reshape(b, c * k, f // k, t) | |
return x | |
def cws2cac(self, x): | |
k = self.num_subbands | |
b, c, f, t = x.shape | |
x = x.reshape(b, c // k, k, f, t) | |
x = x.reshape(b, c // k, f * k, t) | |
return x | |
def forward(self, x): | |
x = self.stft(x) | |
mix = x = self.cac2cws(x) | |
first_conv_out = x = self.first_conv(x) | |
x = x.transpose(-1, -2) | |
x = self.swin_upernet_model(x).logits | |
x = x.transpose(-1, -2) | |
x = x * first_conv_out # reduce artifacts | |
x = self.final_conv(torch.cat([mix, x], 1)) | |
x = self.cws2cac(x) | |
if self.num_target_instruments > 1: | |
b, c, f, t = x.shape | |
x = x.reshape(b, self.num_target_instruments, -1, f, t) | |
x = self.stft.inverse(x) | |
return x | |
if __name__ == "__main__": | |
model = UperNetForSemanticSegmentation.from_pretrained("./results/", ignore_mismatched_sizes=True) | |
print(model) | |
print(model.auxiliary_head.classifier) | |
print(model.decode_head.classifier) | |
x = torch.zeros((2, 16, 512, 512), dtype=torch.float32) | |
res = model(x) | |
print(res.logits.shape) | |
model.save_pretrained('./results/') |