|
|
|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' |
|
|
|
|
|
import argparse |
|
|
import time |
|
|
import librosa |
|
|
from tqdm.auto import tqdm |
|
|
import sys |
|
|
import os |
|
|
import glob |
|
|
import torch |
|
|
import soundfile as sf |
|
|
import torch.nn as nn |
|
|
import numpy as np |
|
|
from assets.i18n.i18n import I18nAuto |
|
|
|
|
|
|
|
|
try: |
|
|
from google.colab import drive |
|
|
IS_COLAB = True |
|
|
except ImportError: |
|
|
IS_COLAB = False |
|
|
|
|
|
i18n = I18nAuto() |
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
sys.path.append(current_dir) |
|
|
|
|
|
from utils import demix, get_model_from_config, normalize_audio, denormalize_audio |
|
|
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights |
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore") |
|
|
|
|
|
def shorten_filename(filename, max_length=30): |
|
|
"""Dosya adını belirtilen maksimum uzunluğa kısaltır.""" |
|
|
base, ext = os.path.splitext(filename) |
|
|
if len(base) <= max_length: |
|
|
return filename |
|
|
shortened = base[:15] + "..." + base[-10:] + ext |
|
|
return shortened |
|
|
|
|
|
def get_soundfile_subtype(pcm_type, is_float=False): |
|
|
"""PCM türüne göre uygun soundfile alt türünü belirler.""" |
|
|
if is_float: |
|
|
return 'FLOAT' |
|
|
subtype_map = { |
|
|
'PCM_16': 'PCM_16', |
|
|
'PCM_24': 'PCM_24', |
|
|
'FLOAT': 'FLOAT' |
|
|
} |
|
|
return subtype_map.get(pcm_type, 'FLOAT') |
|
|
|
|
|
def run_folder(model, args, config, device, verbose: bool = False): |
|
|
start_time = time.time() |
|
|
model.eval() |
|
|
|
|
|
mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*'))) |
|
|
sample_rate = getattr(config.audio, 'sample_rate', 44100) |
|
|
|
|
|
print(i18n("total_files_found").format(len(mixture_paths), sample_rate)) |
|
|
|
|
|
instruments = prefer_target_instrument(config)[:] |
|
|
|
|
|
|
|
|
store_dir = args.store_dir |
|
|
os.makedirs(store_dir, exist_ok=True) |
|
|
|
|
|
if not verbose: |
|
|
mixture_paths = tqdm(mixture_paths, desc=i18n("total_progress")) |
|
|
else: |
|
|
mixture_paths = mixture_paths |
|
|
|
|
|
detailed_pbar = not args.disable_detailed_pbar |
|
|
print(i18n("detailed_pbar_enabled").format(detailed_pbar)) |
|
|
|
|
|
for path in mixture_paths: |
|
|
try: |
|
|
mix, sr = librosa.load(path, sr=sample_rate, mono=False) |
|
|
print(i18n("loaded_audio").format(path, mix.shape)) |
|
|
except Exception as e: |
|
|
print(i18n("cannot_read_track").format(path)) |
|
|
print(i18n("error_message").format(str(e))) |
|
|
continue |
|
|
|
|
|
mix_orig = mix.copy() |
|
|
if 'normalize' in config.inference: |
|
|
if config.inference['normalize'] is True: |
|
|
mix, norm_params = normalize_audio(mix) |
|
|
|
|
|
waveforms_orig = demix(config, model, mix, device, model_type=args.model_type, pbar=detailed_pbar) |
|
|
|
|
|
if args.use_tta: |
|
|
waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type) |
|
|
|
|
|
if args.demud_phaseremix_inst: |
|
|
print(i18n("demudding_track").format(path)) |
|
|
instr = 'vocals' if 'vocals' in instruments else instruments[0] |
|
|
instruments.append('instrumental_phaseremix') |
|
|
if 'instrumental' not in instruments and 'Instrumental' not in instruments: |
|
|
mix_modified = mix_orig - 2*waveforms_orig[instr] |
|
|
mix_modified_ = mix_modified.copy() |
|
|
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar) |
|
|
if args.use_tta: |
|
|
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type) |
|
|
waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr] |
|
|
else: |
|
|
mix_modified = 2*waveforms_orig[instr] - mix_orig |
|
|
mix_modified_ = mix_modified.copy() |
|
|
waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type, pbar=detailed_pbar) |
|
|
if args.use_tta: |
|
|
waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type) |
|
|
waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr] |
|
|
|
|
|
if args.extract_instrumental: |
|
|
instr = 'vocals' if 'vocals' in instruments else instruments[0] |
|
|
waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr] |
|
|
if 'instrumental' not in instruments: |
|
|
instruments.append('instrumental') |
|
|
|
|
|
for instr in instruments: |
|
|
estimates = waveforms_orig[instr] |
|
|
if 'normalize' in config.inference: |
|
|
if config.inference['normalize'] is True: |
|
|
estimates = denormalize_audio(estimates, norm_params) |
|
|
|
|
|
is_float = getattr(args, 'export_format', '').startswith('wav FLOAT') |
|
|
codec = 'flac' if getattr(args, 'flac_file', False) else 'wav' |
|
|
if codec == 'flac': |
|
|
subtype = get_soundfile_subtype(args.pcm_type, is_float) |
|
|
else: |
|
|
subtype = get_soundfile_subtype('FLOAT', is_float) |
|
|
|
|
|
shortened_filename = shorten_filename(os.path.basename(path)) |
|
|
output_filename = f"{shortened_filename}_{instr}.{codec}" |
|
|
output_path = os.path.join(store_dir, output_filename) |
|
|
sf.write(output_path, estimates.T, sr, subtype=subtype) |
|
|
|
|
|
print(i18n("elapsed_time").format(time.time() - start_time)) |
|
|
|
|
|
def proc_folder(args): |
|
|
parser = argparse.ArgumentParser(description=i18n("proc_folder_description")) |
|
|
parser.add_argument("--model_type", type=str, default='mdx23c', help=i18n("model_type_help")) |
|
|
parser.add_argument("--config_path", type=str, help=i18n("config_path_help")) |
|
|
parser.add_argument("--demud_phaseremix_inst", action='store_true', help=i18n("demud_phaseremix_help")) |
|
|
parser.add_argument("--start_check_point", type=str, default='', help=i18n("start_checkpoint_help")) |
|
|
parser.add_argument("--input_folder", type=str, help=i18n("input_folder_help")) |
|
|
parser.add_argument("--audio_path", type=str, help=i18n("audio_path_help")) |
|
|
parser.add_argument("--store_dir", type=str, default="", help=i18n("store_dir_help")) |
|
|
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help=i18n("device_ids_help")) |
|
|
parser.add_argument("--extract_instrumental", action='store_true', help=i18n("extract_instrumental_help")) |
|
|
parser.add_argument("--disable_detailed_pbar", action='store_true', help=i18n("disable_detailed_pbar_help")) |
|
|
parser.add_argument("--force_cpu", action='store_true', help=i18n("force_cpu_help")) |
|
|
parser.add_argument("--flac_file", action='store_true', help=i18n("flac_file_help")) |
|
|
parser.add_argument("--export_format", type=str, choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], default='flac PCM_24', help=i18n("export_format_help")) |
|
|
parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24', help=i18n("pcm_type_help")) |
|
|
parser.add_argument("--use_tta", action='store_true', help=i18n("use_tta_help")) |
|
|
parser.add_argument("--lora_checkpoint", type=str, default='', help=i18n("lora_checkpoint_help")) |
|
|
parser.add_argument("--chunk_size", type=int, default=1000000, help="Inference chunk size") |
|
|
parser.add_argument("--overlap", type=int, default=4, help="Inference overlap factor") |
|
|
|
|
|
if args is None: |
|
|
args = parser.parse_args() |
|
|
else: |
|
|
args = parser.parse_args(args) |
|
|
|
|
|
device = "cpu" |
|
|
if args.force_cpu: |
|
|
device = "cpu" |
|
|
elif torch.cuda.is_available(): |
|
|
print(i18n("cuda_available")) |
|
|
device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}' |
|
|
elif torch.backends.mps.is_available(): |
|
|
device = "mps" |
|
|
|
|
|
print(i18n("using_device").format(device)) |
|
|
|
|
|
model_load_start_time = time.time() |
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
|
|
model, config = get_model_from_config(args.model_type, args.config_path) |
|
|
|
|
|
if args.start_check_point != '': |
|
|
load_start_checkpoint(args, model, type_='inference') |
|
|
|
|
|
print(i18n("instruments_print").format(config.training.instruments)) |
|
|
|
|
|
if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu: |
|
|
model = nn.DataParallel(model, device_ids=args.device_ids) |
|
|
|
|
|
model = model.to(device) |
|
|
|
|
|
print(i18n("model_load_time").format(time.time() - model_load_start_time)) |
|
|
|
|
|
run_folder(model, args, config, device, verbose=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
proc_folder(None) |
|
|
|