Update utils.py
Browse files
utils.py
CHANGED
|
@@ -132,11 +132,22 @@ def apply_tta(
|
|
| 132 |
mix: torch.Tensor,
|
| 133 |
waveforms_orig: Dict[str, torch.Tensor],
|
| 134 |
device: str,
|
| 135 |
-
model_type: str
|
|
|
|
| 136 |
) -> Dict[str, torch.Tensor]:
|
| 137 |
track_proc_list = [mix[::-1].clone(), -mix.clone()]
|
|
|
|
|
|
|
|
|
|
| 138 |
for i, augmented_mix in enumerate(track_proc_list):
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
for el in waveforms:
|
| 141 |
if i == 0:
|
| 142 |
waveforms_orig[el] += waveforms[el][::-1].clone()
|
|
@@ -146,8 +157,15 @@ def apply_tta(
|
|
| 146 |
gc.collect()
|
| 147 |
if device.startswith('cuda'):
|
| 148 |
torch.cuda.empty_cache()
|
|
|
|
| 149 |
for el in waveforms_orig:
|
| 150 |
waveforms_orig[el] /= (len(track_proc_list) + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
return waveforms_orig
|
| 152 |
|
| 153 |
def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor:
|
|
@@ -164,7 +182,8 @@ def demix(
|
|
| 164 |
mix: torch.Tensor,
|
| 165 |
device: str,
|
| 166 |
model_type: str,
|
| 167 |
-
pbar: bool = False
|
|
|
|
| 168 |
) -> Dict[str, np.ndarray]:
|
| 169 |
logging.info(f"Starting demix for model_type: {model_type}, chunk_size: {config.audio.chunk_size}")
|
| 170 |
|
|
@@ -196,6 +215,10 @@ def demix(
|
|
| 196 |
model = model.to(device)
|
| 197 |
model.eval()
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
with torch.no_grad(): # Çıkarım için gradyan yok
|
| 200 |
with torch.cuda.amp.autocast(enabled=device.startswith('cuda'), dtype=torch.float16):
|
| 201 |
req_shape = (num_instruments,) + mix.shape
|
|
@@ -205,7 +228,7 @@ def demix(
|
|
| 205 |
i = 0
|
| 206 |
batch_data = []
|
| 207 |
batch_locations = []
|
| 208 |
-
|
| 209 |
|
| 210 |
while i < mix.shape[1]:
|
| 211 |
part = mix[:, i:i + chunk_size]
|
|
@@ -240,6 +263,13 @@ def demix(
|
|
| 240 |
result[..., start:start + seg_len] += x[j, ..., :seg_len]
|
| 241 |
counter[..., start:start + seg_len] += 1.0
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
del arr, x
|
| 244 |
batch_data.clear()
|
| 245 |
batch_locations.clear()
|
|
@@ -248,11 +278,8 @@ def demix(
|
|
| 248 |
torch.cuda.empty_cache()
|
| 249 |
logging.info("Cleared CUDA cache")
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
if progress_bar:
|
| 255 |
-
progress_bar.close()
|
| 256 |
|
| 257 |
estimated_sources = result / (counter + 1e-8)
|
| 258 |
estimated_sources = estimated_sources.numpy().astype(np.float32)
|
|
@@ -264,6 +291,12 @@ def demix(
|
|
| 264 |
instruments = config.training.instruments if mode == "demucs" else prefer_target_instrument(config)
|
| 265 |
ret_data = {k: v for k, v in zip(instruments, estimated_sources)}
|
| 266 |
logging.info("Demix completed successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
return ret_data
|
| 268 |
|
| 269 |
def prefer_target_instrument(config: ConfigDict) -> List[str]:
|
|
|
|
| 132 |
mix: torch.Tensor,
|
| 133 |
waveforms_orig: Dict[str, torch.Tensor],
|
| 134 |
device: str,
|
| 135 |
+
model_type: str,
|
| 136 |
+
progress=None # Gradio progress nesnesi
|
| 137 |
) -> Dict[str, torch.Tensor]:
|
| 138 |
track_proc_list = [mix[::-1].clone(), -mix.clone()]
|
| 139 |
+
total_steps = len(track_proc_list)
|
| 140 |
+
processed_steps = 0
|
| 141 |
+
|
| 142 |
for i, augmented_mix in enumerate(track_proc_list):
|
| 143 |
+
# TTA adımı için ilerleme güncellemesi
|
| 144 |
+
processed_steps += 1
|
| 145 |
+
progress_value = round((processed_steps / total_steps) * 50) # TTA için 0-50% aralığı
|
| 146 |
+
if progress is not None and callable(getattr(progress, '__call__', None)):
|
| 147 |
+
progress(progress_value / 100, desc=f"Applying TTA step {processed_steps}/{total_steps}")
|
| 148 |
+
update_progress_html(f"Applying TTA step {processed_steps}/{total_steps}", progress_value)
|
| 149 |
+
|
| 150 |
+
waveforms = demix(config, model, augmented_mix, device, model_type=model_type, pbar=False, progress=progress)
|
| 151 |
for el in waveforms:
|
| 152 |
if i == 0:
|
| 153 |
waveforms_orig[el] += waveforms[el][::-1].clone()
|
|
|
|
| 157 |
gc.collect()
|
| 158 |
if device.startswith('cuda'):
|
| 159 |
torch.cuda.empty_cache()
|
| 160 |
+
|
| 161 |
for el in waveforms_orig:
|
| 162 |
waveforms_orig[el] /= (len(track_proc_list) + 1)
|
| 163 |
+
|
| 164 |
+
# TTA tamamlandı
|
| 165 |
+
if progress is not None and callable(getattr(progress, '__call__', None)):
|
| 166 |
+
progress(0.5, desc="TTA completed")
|
| 167 |
+
update_progress_html("TTA completed", 50)
|
| 168 |
+
|
| 169 |
return waveforms_orig
|
| 170 |
|
| 171 |
def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor:
|
|
|
|
| 182 |
mix: torch.Tensor,
|
| 183 |
device: str,
|
| 184 |
model_type: str,
|
| 185 |
+
pbar: bool = False,
|
| 186 |
+
progress=None # Gradio progress nesnesi
|
| 187 |
) -> Dict[str, np.ndarray]:
|
| 188 |
logging.info(f"Starting demix for model_type: {model_type}, chunk_size: {config.audio.chunk_size}")
|
| 189 |
|
|
|
|
| 215 |
model = model.to(device)
|
| 216 |
model.eval()
|
| 217 |
|
| 218 |
+
# Toplam chunk sayısını hesapla
|
| 219 |
+
total_chunks = (mix.shape[1] + step - 1) // step
|
| 220 |
+
processed_chunks = 0
|
| 221 |
+
|
| 222 |
with torch.no_grad(): # Çıkarım için gradyan yok
|
| 223 |
with torch.cuda.amp.autocast(enabled=device.startswith('cuda'), dtype=torch.float16):
|
| 224 |
req_shape = (num_instruments,) + mix.shape
|
|
|
|
| 228 |
i = 0
|
| 229 |
batch_data = []
|
| 230 |
batch_locations = []
|
| 231 |
+
start_time = time.time()
|
| 232 |
|
| 233 |
while i < mix.shape[1]:
|
| 234 |
part = mix[:, i:i + chunk_size]
|
|
|
|
| 263 |
result[..., start:start + seg_len] += x[j, ..., :seg_len]
|
| 264 |
counter[..., start:start + seg_len] += 1.0
|
| 265 |
|
| 266 |
+
# İlerleme güncellemesi
|
| 267 |
+
processed_chunks += len(batch_data)
|
| 268 |
+
progress_value = min(round((processed_chunks / total_chunks) * 100), 100) # %1 hassasiyet
|
| 269 |
+
if progress is not None and callable(getattr(progress, '__call__', None)):
|
| 270 |
+
progress(progress_value / 100, desc=f"Processing chunk {processed_chunks}/{total_chunks}")
|
| 271 |
+
update_progress_html(f"Processing chunk {processed_chunks}/{total_chunks}", progress_value)
|
| 272 |
+
|
| 273 |
del arr, x
|
| 274 |
batch_data.clear()
|
| 275 |
batch_locations.clear()
|
|
|
|
| 278 |
torch.cuda.empty_cache()
|
| 279 |
logging.info("Cleared CUDA cache")
|
| 280 |
|
| 281 |
+
elapsed_time = time.time() - start_time
|
| 282 |
+
logging.info(f"Demix completed in {elapsed_time:.2f} seconds")
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
estimated_sources = result / (counter + 1e-8)
|
| 285 |
estimated_sources = estimated_sources.numpy().astype(np.float32)
|
|
|
|
| 291 |
instruments = config.training.instruments if mode == "demucs" else prefer_target_instrument(config)
|
| 292 |
ret_data = {k: v for k, v in zip(instruments, estimated_sources)}
|
| 293 |
logging.info("Demix completed successfully")
|
| 294 |
+
|
| 295 |
+
# Son ilerleme güncellemesi
|
| 296 |
+
if progress is not None and callable(getattr(progress, '__call__', None)):
|
| 297 |
+
progress(1.0, desc="Demix completed")
|
| 298 |
+
update_progress_html("Demix completed", 100)
|
| 299 |
+
|
| 300 |
return ret_data
|
| 301 |
|
| 302 |
def prefer_target_instrument(config: ConfigDict) -> List[str]:
|