# Kaggle için gerekli kütüphaneleri yükleme !pip install librosa soundfile psutil tqdm import os import sys import argparse import numpy as np import soundfile as sf import librosa import psutil import gc import traceback from scipy.signal import stft, istft from pathlib import Path import tempfile import shutil import json from tqdm import tqdm import time class AudioEnsembleEngine: def __init__(self): self.temp_dir = None self.log_file = "/kaggle/working/ensemble_processor.log" def __enter__(self): self.temp_dir = tempfile.mkdtemp(prefix='audio_ensemble_', dir='/kaggle/working/') self.setup_logging() return self def __exit__(self, exc_type, exc_val, exc_tb): if self.temp_dir and os.path.exists(self.temp_dir): shutil.rmtree(self.temp_dir, ignore_errors=True) def setup_logging(self): """Initialize detailed logging system.""" with open(self.log_file, 'w') as f: f.write("Audio Ensemble Processor Log\n") f.write("="*50 + "\n") f.write(f"System Memory: {psutil.virtual_memory().total/(1024**3):.2f} GB\n") f.write(f"Python Version: {sys.version}\n\n") def log_message(self, message): """Log messages with timestamp.""" with open(self.log_file, 'a') as f: f.write(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}\n") def normalize_path(self, path): """Handle all path-related issues comprehensively.""" try: # Kaggle'da dosya yolları /kaggle/input/ veya /kaggle/working/ altında path = str(Path(path).absolute().resolve()) # Handle problematic characters if any(char in path for char in '[]()|&; '): base, ext = os.path.splitext(path) safe_name = f"{hash(base)}{ext}" temp_path = os.path.join(self.temp_dir, safe_name) if not os.path.exists(temp_path): data, sr = librosa.load(path, sr=None, mono=False) sf.write(temp_path, data.T, sr) return temp_path return path except Exception as e: self.log_message(f"Path normalization failed: {str(e)}") return path def validate_inputs(self, files, method, output_path): """Comprehensive input validation with detailed error reporting.""" errors = [] valid_methods = [ 'avg_wave', 'median_wave', 'max_wave', 'min_wave', 'max_fft', 'min_fft', 'median_fft' ] # Method validation if method not in valid_methods: errors.append(f"Invalid method '{method}'. Available: {valid_methods}") # File validation valid_files = [] sample_rates = set() durations = [] channels_set = set() for f in files: try: f_normalized = self.normalize_path(f) # Basic checks if not os.path.exists(f_normalized): errors.append(f"File not found: {f_normalized}") continue if os.path.getsize(f_normalized) == 0: errors.append(f"Empty file: {f_normalized}") continue # Audio file validation try: with sf.SoundFile(f_normalized) as sf_file: sr = sf_file.samplerate frames = sf_file.frames channels = sf_file.channels except Exception as e: errors.append(f"Invalid audio file {f_normalized}: {str(e)}") continue # Audio characteristics if channels != 2: errors.append(f"File must be stereo (has {channels} channels): {f_normalized}") continue sample_rates.add(sr) durations.append(frames / sr) channels_set.add(channels) valid_files.append(f_normalized) except Exception as e: errors.append(f"Error processing {f}: {str(e)}") continue # Final checks if len(valid_files) < 2: errors.append("At least 2 valid files required") if len(sample_rates) > 1: errors.append(f"Sample rate mismatch: {sample_rates}") if len(channels_set) > 1: errors.append(f"Channel count mismatch: {channels_set}") # Output path validation try: output_path = self.normalize_path(output_path) output_dir = os.path.dirname(output_path) or '/kaggle/working/' if not os.path.exists(output_dir): os.makedirs(output_dir, exist_ok=True) if not os.access(output_dir, os.W_OK): errors.append(f"No write permission for output directory: {output_dir}") except Exception as e: errors.append(f"Output path error: {str(e)}") if errors: error_msg = "\n".join(errors) self.log_message(f"Validation failed:\n{error_msg}") raise ValueError(error_msg) target_sr = sample_rates.pop() if sample_rates else 44100 return valid_files, target_sr, min(durations) if durations else None def process_waveform(self, chunks, method, weights=None): """All waveform domain processing methods.""" if method == 'avg_wave': if weights is not None: return np.average(chunks, axis=0, weights=weights) return np.mean(chunks, axis=0) elif method == 'median_wave': return np.median(chunks, axis=0) elif method == 'max_wave': return np.max(chunks, axis=0) elif method == 'min_wave': return np.min(chunks, axis=0) def process_spectral(self, chunks, method): """All frequency domain processing methods.""" specs = [] for c in chunks: channel_specs = [] for channel in range(c.shape[0]): _, _, Zxx = stft(c[channel], nperseg=1024, noverlap=512) channel_specs.append(Zxx) specs.append(np.array(channel_specs)) specs = np.array(specs) mag = np.abs(specs) if method == 'max_fft': combined_mag = np.max(mag, axis=0) elif method == 'min_fft': combined_mag = np.min(mag, axis=0) elif method == 'median_fft': combined_mag = np.median(mag, axis=0) # Use phase from first file combined_spec = combined_mag * np.exp(1j * np.angle(specs[0])) # ISTFT reconstruction reconstructed = np.zeros((combined_spec.shape[0], chunks[0].shape[1])) for channel in range(combined_spec.shape[0]): _, xrec = istft(combined_spec[channel], nperseg=1024, noverlap=512) reconstructed[channel] = xrec[:chunks[0].shape[1]] return reconstructed def run_ensemble(self, files, method, output_path, weights=None, buffer_size=32768): """Core ensemble processing with maximum robustness.""" try: # Validate and prepare inputs valid_files, target_sr, duration = self.validate_inputs(files, method, output_path) output_path = self.normalize_path(output_path) self.log_message(f"Starting ensemble with method: {method}") self.log_message(f"Input files: {json.dumps(valid_files, indent=2)}") self.log_message(f"Target sample rate: {target_sr}Hz") self.log_message(f"Output path: {output_path}") # Prepare weights if weights and len(weights) == len(valid_files): weights = np.array(weights, dtype=np.float32) weights /= weights.sum() # Normalize self.log_message(f"Using weights: {weights}") else: weights = None # Open all files readers = [] try: readers = [sf.SoundFile(f) for f in valid_files] shortest_frames = min(int(duration * r.samplerate) for r in readers) # Prepare output with sf.SoundFile(output_path, 'w', target_sr, 2, 'PCM_24') as outfile: # Process in chunks with progress bar progress = tqdm(total=shortest_frames, unit='samples', desc='Processing') for pos in range(0, shortest_frames, buffer_size): chunk_size = min(buffer_size, shortest_frames - pos) # Read aligned chunks from all files chunks = [] for r in readers: r.seek(pos) data = r.read(chunk_size) if data.size == 0: data = np.zeros((chunk_size, 2)) chunks.append(data.T) # Transpose to (channels, samples) chunks = np.array(chunks) # Process based on method type if method.endswith('_fft'): result = self.process_spectral(chunks, method) else: result = self.process_waveform(chunks, method, weights) # Write output outfile.write(result.T) # Transpose back to (samples, channels) # Clean up and update progress del chunks, result if pos % (5 * buffer_size) == 0: gc.collect() progress.update(chunk_size) progress.close() self.log_message(f"Successfully created output: {output_path}") print(f"\nEnsemble completed successfully: {output_path}") return True except Exception as e: self.log_message(f"Processing error: {str(e)}\n{traceback.format_exc()}") raise finally: for r in readers: try: r.close() except: pass except Exception as e: self.log_message(f"Fatal error: {str(e)}\n{traceback.format_exc()}") print(f"\nError during processing: {str(e)}", file=sys.stderr) return False def main(): parser = argparse.ArgumentParser( description='Ultimate Audio Ensemble Processor - Supports all ensemble methods', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--files', nargs='+', required=True, help='Input audio files (supports special characters)') parser.add_argument('--type', required=True, choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'max_fft', 'min_fft', 'median_fft'], help='Ensemble method to use') parser.add_argument('--weights', nargs='+', type=float, help='Relative weights for each input file') parser.add_argument('--output', required=True, help='Output file path') parser.add_argument('--buffer', type=int, default=32768, help='Buffer size in samples (larger=faster but uses more memory)') args = parser.parse_args() with AudioEnsembleEngine() as engine: success = engine.run_ensemble( files=args.files, method=args.type, output_path=args.output, weights=args.weights, buffer_size=args.buffer ) sys.exit(0 if success else 1) if __name__ == "__main__": main()