Spaces:
Running
on
Zero
Running
on
Zero
# coding: utf-8 | |
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/' | |
import os | |
import librosa | |
import soundfile as sf | |
import numpy as np | |
import argparse | |
import logging | |
import gc | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def stft(wave, nfft, hl): | |
wave_left = np.ascontiguousarray(wave[0]) | |
wave_right = np.ascontiguousarray(wave[1]) | |
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl) | |
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl) | |
spec = np.stack([spec_left, spec_right]) | |
return spec | |
def istft(spec, hl, length): | |
spec_left = np.ascontiguousarray(spec[0]) | |
spec_right = np.ascontiguousarray(spec[1]) | |
wave_left = librosa.istft(spec_left, hop_length=hl, length=length) | |
wave_right = librosa.istft(spec_right, hop_length=hl, length=length) | |
wave = np.stack([wave_left, wave_right]) | |
return wave | |
def absmax(a, *, axis): | |
dims = list(a.shape) | |
dims.pop(axis) | |
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) | |
argmax = np.abs(a).argmax(axis=axis) | |
insert_pos = (len(a.shape) + axis) % len(a.shape) | |
indices.insert(insert_pos, argmax) | |
return a[tuple(indices)] | |
def absmin(a, *, axis): | |
dims = list(a.shape) | |
dims.pop(axis) | |
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)]) | |
argmax = np.abs(a).argmin(axis=axis) | |
insert_pos = (len(a.shape) + axis) % len(a.shape) | |
indices.insert(insert_pos, argmax) | |
return a[tuple(indices)] | |
def lambda_max(arr, axis=None, key=None, keepdims=False): | |
idxs = np.argmax(key(arr), axis) | |
if axis is not None: | |
idxs = np.expand_dims(idxs, axis) | |
result = np.take_along_axis(arr, idxs, axis) | |
if not keepdims: | |
result = np.squeeze(result, axis=axis) | |
return result | |
else: | |
return arr.flatten()[idxs] | |
def lambda_min(arr, axis=None, key=None, keepdims=False): | |
idxs = np.argmin(key(arr), axis) | |
if axis is not None: | |
idxs = np.expand_dims(idxs, axis) | |
result = np.take_along_axis(arr, idxs, axis) | |
if not keepdims: | |
result = np.squeeze(result, axis=axis) | |
return result | |
else: | |
return arr.flatten()[idxs] | |
def average_waveforms(pred_track, weights, algorithm): | |
""" | |
:param pred_track: shape = (num, channels, length) | |
:param weights: shape = (num, ) | |
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft | |
:return: averaged waveform in shape (channels, length) | |
""" | |
pred_track = np.asarray(pred_track) # NumPy 2.0+ compatibility | |
final_length = pred_track.shape[-1] | |
mod_track = [] | |
for i in range(pred_track.shape[0]): | |
if algorithm == 'avg_wave': | |
mod_track.append(pred_track[i] * weights[i]) | |
elif algorithm in ['median_wave', 'min_wave', 'max_wave']: | |
mod_track.append(pred_track[i]) | |
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']: | |
spec = stft(pred_track[i], nfft=2048, hl=1024) | |
if algorithm == 'avg_fft': | |
mod_track.append(spec * weights[i]) | |
else: | |
mod_track.append(spec) | |
del spec | |
gc.collect() | |
mod_track = np.asarray(mod_track) # NumPy 2.0+ compatibility | |
if algorithm == 'avg_wave': | |
result = mod_track.sum(axis=0) / np.sum(weights) | |
elif algorithm == 'median_wave': | |
result = np.median(mod_track, axis=0) | |
elif algorithm == 'min_wave': | |
result = lambda_min(mod_track, axis=0, key=np.abs) | |
elif algorithm == 'max_wave': | |
result = lambda_max(mod_track, axis=0, key=np.abs) | |
elif algorithm == 'avg_fft': | |
result = mod_track.sum(axis=0) / np.sum(weights) | |
result = istft(result, 1024, final_length) | |
elif algorithm == 'min_fft': | |
result = lambda_min(mod_track, axis=0, key=np.abs) | |
result = istft(result, 1024, final_length) | |
elif algorithm == 'max_fft': | |
result = absmax(mod_track, axis=0) | |
result = istft(result, 1024, final_length) | |
elif algorithm == 'median_fft': | |
result = np.median(mod_track, axis=0) | |
result = istft(result, 1024, final_length) | |
gc.collect() | |
return result | |
def ensemble_files(args): | |
parser = argparse.ArgumentParser(description="Ensemble audio files") | |
parser.add_argument('--files', nargs='+', required=True, help="Input audio files") | |
parser.add_argument('--type', required=True, choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], help="Ensemble type") | |
parser.add_argument('--weights', nargs='+', type=float, default=None, help="Weights for each file") | |
parser.add_argument('--output', required=True, help="Output file path") | |
args = parser.parse_args(args) if isinstance(args, list) else args | |
logger.info(f"Ensemble type: {args.type}") | |
logger.info(f"Number of input files: {len(args.files)}") | |
weights = args.weights if args.weights else [1.0] * len(args.files) | |
if len(weights) != len(args.files): | |
logger.error("Number of weights must match number of audio files") | |
raise ValueError("Number of weights must match number of audio files") | |
logger.info(f"Weights: {weights}") | |
logger.info(f"Output file: {args.output}") | |
data = [] | |
sr = None | |
for f in args.files: | |
if not os.path.isfile(f): | |
logger.error(f"Cannot find file: {f}") | |
raise FileNotFoundError(f"Cannot find file: {f}") | |
logger.info(f"Reading file: {f}") | |
try: | |
wav, curr_sr = librosa.load(f, sr=None, mono=False) | |
if sr is None: | |
sr = curr_sr | |
elif sr != curr_sr: | |
logger.error("All audio files must have the same sample rate") | |
raise ValueError("All audio files must have the same sample rate") | |
logger.info(f"Waveform shape: {wav.shape} sample rate: {sr}") | |
data.append(wav) | |
del wav | |
gc.collect() | |
except Exception as e: | |
logger.error(f"Error reading audio file {f}: {str(e)}") | |
raise RuntimeError(f"Error reading audio file {f}: {str(e)}") | |
try: | |
data = np.asarray(data) # NumPy 2.0+ compatibility | |
res = average_waveforms(data, weights, args.type) | |
logger.info(f"Result shape: {res.shape}") | |
os.makedirs(os.path.dirname(args.output), exist_ok=True) | |
sf.write(args.output, res.T, sr, 'FLOAT') | |
logger.info(f"Output written to: {args.output}") | |
return args.output | |
except Exception as e: | |
logger.error(f"Error during ensemble processing: {str(e)}") | |
raise RuntimeError(f"Error during ensemble processing: {str(e)}") | |
finally: | |
gc.collect() | |
if __name__ == "__main__": | |
ensemble_files(sys.argv[1:]) |