Spaces:
Running
Running
| import gradio as gr | |
| import numpy as np | |
| def branin(x1, x2): | |
| y = float( | |
| (x2 - 5.1 / (4 * np.pi**2) * x1**2 + 5.0 / np.pi * x1 - 6.0) ** 2 | |
| + 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x1) | |
| + 10 | |
| ) # | |
| return y | |
| iface = gr.Interface( | |
| fn=branin, | |
| inputs=[ | |
| gr.Number(0.25, label="x1", minimum=-5.0, maximum=10.0), | |
| gr.Number(0.75, label="x2", minimum=0.0, maximum=15.0), | |
| ], | |
| outputs=gr.Number(branin(0.25, 0.75), label="branin function value"), | |
| description=""" | |
| ## Objective | |
| Minimize the Branin function by selecting appropriate values of x1 and x2. | |
| ## Constraints | |
| ### Bounds | |
| -5 <= x1 <= 10 | |
| 0 <= x2 <= 15 | |
| ## References | |
| - https://www.sfu.ca/~ssurjano/branin.html | |
| """, | |
| ) | |
| iface.launch() | |