Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- README.md +3 -9
- conv_career_tools_adriana.py +347 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: career_conversation
|
3 |
+
app_file: conv_career_tools_adriana.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 5.33.1
|
|
|
|
|
6 |
---
|
|
|
|
conv_career_tools_adriana.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Career Conversation Project
|
5 |
+
|
6 |
+
# In[41]:
|
7 |
+
|
8 |
+
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from openai import OpenAI
|
11 |
+
import json
|
12 |
+
import os
|
13 |
+
import requests
|
14 |
+
from pypdf import PdfReader
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
|
18 |
+
# In[42]:
|
19 |
+
|
20 |
+
|
21 |
+
load_dotenv(override=True)
|
22 |
+
openai = OpenAI()
|
23 |
+
gemini = OpenAI(
|
24 |
+
api_key = os.getenv('GOOGLE_API_KEY'),
|
25 |
+
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
# In[43]:
|
30 |
+
|
31 |
+
|
32 |
+
pushover_user = os.getenv("PUSHOVER_USER")
|
33 |
+
pushover_token = os.getenv("PUSHOVER_TOKEN")
|
34 |
+
pushover_url = "https://api.pushover.net/1/messages.json"
|
35 |
+
|
36 |
+
|
37 |
+
# In[44]:
|
38 |
+
|
39 |
+
|
40 |
+
reader = PdfReader("../me/linkedin.pdf")
|
41 |
+
linkedin = ""
|
42 |
+
for page in reader.pages:
|
43 |
+
text = page.extract_text()
|
44 |
+
if text:
|
45 |
+
linkedin += text
|
46 |
+
|
47 |
+
with open("../me/summary.txt", "r", encoding="utf-8") as f:
|
48 |
+
summary = f.read()
|
49 |
+
|
50 |
+
name = "Adriana Salcedo"
|
51 |
+
|
52 |
+
|
53 |
+
# In[45]:
|
54 |
+
|
55 |
+
|
56 |
+
def push(message):
|
57 |
+
print(f"Push: {message}")
|
58 |
+
payload = {"user": pushover_user, "token": pushover_token, "message": message}
|
59 |
+
requests.post(pushover_url, data=payload)
|
60 |
+
|
61 |
+
|
62 |
+
# ## Tools
|
63 |
+
|
64 |
+
# In[46]:
|
65 |
+
|
66 |
+
|
67 |
+
def record_user_details(email, name="Name not provided", notes="not provided"):
|
68 |
+
push(f"Recording interest from {name} with email {email} and notes {notes}")
|
69 |
+
return {"recorded": "ok"}
|
70 |
+
|
71 |
+
|
72 |
+
def record_unknown_question(question):
|
73 |
+
push(f"Recording {question} asked that I couldn't answer")
|
74 |
+
return {"recorded": "ok"}
|
75 |
+
|
76 |
+
def record_personal_question(question, acceptable):
|
77 |
+
if acceptable:
|
78 |
+
push(f'A personal question was asked and answered:\n {question}')
|
79 |
+
else:
|
80 |
+
push(f'A personal question was asked and not answered:\n {question}')
|
81 |
+
return {"recorded": "ok"}
|
82 |
+
|
83 |
+
|
84 |
+
def record_skill_question(question):
|
85 |
+
push(f'A skill-related question was asked:\n {question}')
|
86 |
+
return {'recorded': 'ok'}
|
87 |
+
|
88 |
+
|
89 |
+
# In[47]:
|
90 |
+
|
91 |
+
|
92 |
+
record_user_details_json = {
|
93 |
+
"name": "record_user_details",
|
94 |
+
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
|
95 |
+
"parameters": {
|
96 |
+
"type": "object",
|
97 |
+
"properties": {
|
98 |
+
"email": {
|
99 |
+
"type": "string",
|
100 |
+
"description": "The email address of this user"
|
101 |
+
},
|
102 |
+
"name": {
|
103 |
+
"type": "string",
|
104 |
+
"description": "The user's name, if they provided it"
|
105 |
+
}
|
106 |
+
,
|
107 |
+
"notes": {
|
108 |
+
"type": "string",
|
109 |
+
"description": "Any additional information about the conversation that's worth recording to give context"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"required": ["email"],
|
113 |
+
"additionalProperties": False
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
# In[48]:
|
119 |
+
|
120 |
+
|
121 |
+
record_unknown_question_json = {
|
122 |
+
"name": "record_unknown_question",
|
123 |
+
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
|
124 |
+
"parameters": {
|
125 |
+
"type": "object",
|
126 |
+
"properties": {
|
127 |
+
"question": {
|
128 |
+
"type": "string",
|
129 |
+
"description": "The question that couldn't be answered"
|
130 |
+
},
|
131 |
+
},
|
132 |
+
"required": ["question"],
|
133 |
+
"additionalProperties": False
|
134 |
+
}
|
135 |
+
}
|
136 |
+
|
137 |
+
|
138 |
+
# In[49]:
|
139 |
+
|
140 |
+
|
141 |
+
record_personal_question_json = {
|
142 |
+
'name': 'record_personal_question',
|
143 |
+
'description': 'Use this tool to log if a personal question was asked. Indicate if the question is acceptable (can be answered) or not.',
|
144 |
+
'parameters': {
|
145 |
+
'type': 'object',
|
146 |
+
'properties': {
|
147 |
+
'question': {
|
148 |
+
'type': 'string',
|
149 |
+
'description': 'Question that will not be answered'
|
150 |
+
},
|
151 |
+
'acceptable': {
|
152 |
+
'type': 'boolean',
|
153 |
+
'description': 'Indicates if a question is acceptable or not'
|
154 |
+
}
|
155 |
+
},
|
156 |
+
'required': ['question', 'acceptable'],
|
157 |
+
'additionalProperties': False
|
158 |
+
}
|
159 |
+
}
|
160 |
+
|
161 |
+
|
162 |
+
# In[50]:
|
163 |
+
|
164 |
+
|
165 |
+
record_skill_question_json = {
|
166 |
+
'name': 'record_skill_question',
|
167 |
+
'description': (
|
168 |
+
"Whenever a user asks about any skill, technology, tool, programming language, or experience"
|
169 |
+
"regardless of whether it is present in the profile or not. ALWAYS use this tool to notify the owner. "
|
170 |
+
"Pass the original user question as the argument. "
|
171 |
+
"Examples: 'Do you know Python?', 'Have you worked with Tableau?', 'Are you familiar with cloud computing?'"
|
172 |
+
),
|
173 |
+
'parameters': {
|
174 |
+
'type': 'object',
|
175 |
+
'properties': {
|
176 |
+
'question': {
|
177 |
+
'type': 'string',
|
178 |
+
'description': 'Skill-related question was asked'
|
179 |
+
},
|
180 |
+
},
|
181 |
+
'required': ['question'],
|
182 |
+
'additionalProperties': False
|
183 |
+
}
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
# In[51]:
|
188 |
+
|
189 |
+
|
190 |
+
tools = [{"type": "function", "function": record_user_details_json},
|
191 |
+
{"type": "function", "function": record_unknown_question_json},
|
192 |
+
{'type': 'function', 'function': record_personal_question_json},
|
193 |
+
{'type': 'function', 'function': record_skill_question_json}
|
194 |
+
|
195 |
+
]
|
196 |
+
|
197 |
+
|
198 |
+
# In[52]:
|
199 |
+
|
200 |
+
|
201 |
+
def handle_tool_calls(tool_calls):
|
202 |
+
results = []
|
203 |
+
for tool_call in tool_calls:
|
204 |
+
tool_name = tool_call.function.name
|
205 |
+
arguments = json.loads(tool_call.function.arguments)
|
206 |
+
print(f"Tool called: {tool_name}", flush=True)
|
207 |
+
tool = globals().get(tool_name)
|
208 |
+
result = tool(**arguments) if tool else {}
|
209 |
+
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
|
210 |
+
return results
|
211 |
+
|
212 |
+
|
213 |
+
# In[53]:
|
214 |
+
|
215 |
+
|
216 |
+
system_prompt = f"You are acting as {name}. You are answering questions on {name}'s website, \
|
217 |
+
particularly questions related to {name}'s career, background, skills and experience. \
|
218 |
+
Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \
|
219 |
+
You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \
|
220 |
+
Be professional and engaging, as if talking to a potential client or future employer who came across the website. \
|
221 |
+
If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \
|
222 |
+
If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. "
|
223 |
+
|
224 |
+
system_prompt += f"\n\n## Summary:\n{summary}\n\n## LinkedIn Profile:\n{linkedin}\n\n"
|
225 |
+
system_prompt += f"With this context, please chat with the user, always staying in character as {name}."
|
226 |
+
|
227 |
+
|
228 |
+
# ## Implement Evaluator
|
229 |
+
|
230 |
+
# In[54]:
|
231 |
+
|
232 |
+
|
233 |
+
from pydantic import BaseModel
|
234 |
+
|
235 |
+
class Evaluation(BaseModel):
|
236 |
+
is_acceptable: bool
|
237 |
+
feedback: str
|
238 |
+
|
239 |
+
|
240 |
+
# In[55]:
|
241 |
+
|
242 |
+
|
243 |
+
evaluator_system_prompt = f"You are an evaluator that decides whether a response to a question is acceptable. \
|
244 |
+
You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \
|
245 |
+
The Agent is playing the role of {name} and is representing {name} on their website. \
|
246 |
+
The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \
|
247 |
+
The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:"
|
248 |
+
|
249 |
+
evaluator_system_prompt += f"\n\n## Summary:\n{summary}\n\n## LinkedIn Profile:\n{linkedin}\n\n"
|
250 |
+
evaluator_system_prompt += f"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback if necessary."
|
251 |
+
|
252 |
+
|
253 |
+
# In[56]:
|
254 |
+
|
255 |
+
|
256 |
+
def evaluator_user_prompt(reply, message, history):
|
257 |
+
user_prompt = f"Here's the conversation between the User and the Agent: \n\n{history}\n\n"
|
258 |
+
user_prompt += f"Here's the latest message from the User: \n\n{message}\n\n"
|
259 |
+
user_prompt += f"Here's the latest response from the Agent: \n\n{reply}\n\n"
|
260 |
+
user_prompt += f"Please evaluate the response, replying with whether it is acceptable."
|
261 |
+
return user_prompt
|
262 |
+
|
263 |
+
|
264 |
+
# In[57]:
|
265 |
+
|
266 |
+
|
267 |
+
def evaluate(reply, message, history) -> Evaluation:
|
268 |
+
|
269 |
+
messages = [{"role": "system", "content": evaluator_system_prompt}] + [{"role": "user", "content": evaluator_user_prompt(reply, message, history)}]
|
270 |
+
response = gemini.beta.chat.completions.parse(model="gemini-2.0-flash", messages=messages, response_format=Evaluation)
|
271 |
+
return response.choices[0].message.parsed
|
272 |
+
|
273 |
+
|
274 |
+
# In[58]:
|
275 |
+
|
276 |
+
|
277 |
+
def push_evaluation(question, answer, evaluation):
|
278 |
+
message_text = (
|
279 |
+
f'New Evaluation:\n'
|
280 |
+
f'Question: {question}\n'
|
281 |
+
f'Agent answer: {answer}\n'
|
282 |
+
f'Evaluation: {'is acceptable' if evaluation.is_acceptable else 'not acceptable'}'
|
283 |
+
)
|
284 |
+
|
285 |
+
#print("MESSAGE TEXT FÜR PUSH:", message_text)
|
286 |
+
|
287 |
+
payload = {"user": pushover_user,
|
288 |
+
"token": pushover_token,
|
289 |
+
"message": message_text}
|
290 |
+
requests.post(pushover_url, data=payload)
|
291 |
+
|
292 |
+
|
293 |
+
# In[59]:
|
294 |
+
|
295 |
+
|
296 |
+
def chat(message, history):
|
297 |
+
|
298 |
+
messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": message}]
|
299 |
+
done = False
|
300 |
+
while not done:
|
301 |
+
|
302 |
+
|
303 |
+
response = openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
|
304 |
+
|
305 |
+
finish_reason = response.choices[0].finish_reason
|
306 |
+
|
307 |
+
|
308 |
+
# Tool Calls
|
309 |
+
if finish_reason=="tool_calls":
|
310 |
+
msg = response.choices[0].message
|
311 |
+
tool_calls = msg.tool_calls
|
312 |
+
results = handle_tool_calls(tool_calls)
|
313 |
+
messages.append(msg)
|
314 |
+
messages.extend(results)
|
315 |
+
|
316 |
+
response_final = openai.chat.completions.create(model="gpt-4o-mini", messages=messages)
|
317 |
+
agent_reply = response_final.choices[0].message.content
|
318 |
+
|
319 |
+
# Evaluation
|
320 |
+
evaluation = evaluate(agent_reply, message, history)
|
321 |
+
push_evaluation(message, agent_reply, evaluation)
|
322 |
+
|
323 |
+
return agent_reply
|
324 |
+
|
325 |
+
else:
|
326 |
+
done = True
|
327 |
+
return response.choices[0].message.content
|
328 |
+
|
329 |
+
|
330 |
+
# In[ ]:
|
331 |
+
|
332 |
+
|
333 |
+
demo = gr.ChatInterface(chat, type="messages")
|
334 |
+
|
335 |
+
|
336 |
+
# In[ ]:
|
337 |
+
|
338 |
+
|
339 |
+
if __name__ == '__main__':
|
340 |
+
demo.launch()
|
341 |
+
|
342 |
+
|
343 |
+
# In[ ]:
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
python-dotenv
|
3 |
+
gradio
|
4 |
+
pypdf
|
5 |
+
openai
|
6 |
+
openai-agents
|