Server initialization
Browse files- .gitignore +33 -0
- app.py +250 -153
- config.py +122 -5
- core/__init__.py +0 -0
- core/agent.py +0 -17
- core/ai_enrichment.py +0 -41
- core/components.py +0 -23
- core/components.pyi +0 -29
- core/database.py +0 -81
- core/parser.py +0 -30
- core/processing.py +0 -42
- core/summarizer.py +0 -25
- core/utils.py +0 -23
- data/article_url.txt +0 -0
- data/document1.pdf +0 -0
- data/sample_note.txt +0 -0
- mcp_server.py +219 -0
- mcp_tools.py +589 -119
- requirements.txt +20 -9
.gitignore
CHANGED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore environment variables
|
2 |
+
.env
|
3 |
+
|
4 |
+
# Ignore Python cache files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*.pyo
|
8 |
+
*.pyd
|
9 |
+
|
10 |
+
# Ignore Jupyter notebooks checkpoints
|
11 |
+
.ipynb_checkpoints/
|
12 |
+
|
13 |
+
# Ignore virtual environment folders
|
14 |
+
env/
|
15 |
+
venv/
|
16 |
+
ENV/
|
17 |
+
VENV/
|
18 |
+
|
19 |
+
# Ignore VSCode-specific files
|
20 |
+
.vscode/
|
21 |
+
|
22 |
+
# Ignore OS-specific files
|
23 |
+
.DS_Store
|
24 |
+
Thumbs.db
|
25 |
+
|
26 |
+
# Ignore database or app data
|
27 |
+
db/
|
28 |
+
*.sqlite3
|
29 |
+
|
30 |
+
# Ignore Gradio temp files
|
31 |
+
gradio_cached_examples/
|
32 |
+
tmp/
|
33 |
+
*.log
|
app.py
CHANGED
@@ -1,157 +1,254 @@
|
|
1 |
-
import os
|
2 |
-
import uuid
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"""
|
20 |
-
Handle file upload or URL input: parse content, summarize, tag, store.
|
21 |
-
"""
|
22 |
-
content_text = ""
|
23 |
-
source = ""
|
24 |
-
if file_obj is not None:
|
25 |
-
# Save uploaded file to temp path
|
26 |
-
file_path = file_obj.name
|
27 |
-
content_text = parse_document(file_path)
|
28 |
-
source = file_obj.name
|
29 |
-
elif url:
|
30 |
-
content_text = parse_url(url)
|
31 |
-
source = url
|
32 |
-
else:
|
33 |
-
return "No document provided.", "", "", ""
|
34 |
-
|
35 |
-
# Summarize and tag (simulated)
|
36 |
-
summary = summarize_content(content_text)
|
37 |
-
tags = tag_content(content_text)
|
38 |
-
|
39 |
-
# Allow user to override or confirm tags via input
|
40 |
-
if tags_input:
|
41 |
-
# If user entered new tags, split by comma
|
42 |
-
tags = [t.strip() for t in tags_input.split(",") if t.strip() != ""]
|
43 |
-
|
44 |
-
# Store in ChromaDB with a unique ID
|
45 |
-
doc_id = str(uuid.uuid4())
|
46 |
-
metadata = {"source": source, "tags": tags}
|
47 |
-
add_document(doc_id, content_text, metadata)
|
48 |
-
|
49 |
-
return content_text, summary, ", ".join(tags), f"Document stored with ID: {doc_id}"
|
50 |
-
|
51 |
-
def generate_graph():
|
52 |
-
"""
|
53 |
-
Create a simple Plotly graph of documents.
|
54 |
-
Nodes = documents, edges = shared tags.
|
55 |
-
"""
|
56 |
-
# Fetch all documents from ChromaDB
|
57 |
-
from core.storage import get_all_documents
|
58 |
-
docs = get_all_documents()
|
59 |
-
if not docs:
|
60 |
-
return go.Figure() # empty
|
61 |
-
|
62 |
-
# Build graph connections: if two docs share a tag, connect them
|
63 |
-
nodes = {doc["id"]: doc for doc in docs}
|
64 |
-
edges = []
|
65 |
-
for i, doc1 in enumerate(docs):
|
66 |
-
for doc2 in docs[i+1:]:
|
67 |
-
shared_tags = set(doc1["metadata"]["tags"]) & set(doc2["metadata"]["tags"])
|
68 |
-
if shared_tags:
|
69 |
-
edges.append((doc1["id"], doc2["id"]))
|
70 |
-
|
71 |
-
# Use networkx to compute layout (or simple fixed positions)
|
72 |
-
import networkx as nx
|
73 |
-
G = nx.Graph()
|
74 |
-
G.add_nodes_from(nodes.keys())
|
75 |
-
G.add_edges_from(edges)
|
76 |
-
pos = nx.spring_layout(G, seed=42)
|
77 |
-
|
78 |
-
# Create Plotly traces
|
79 |
-
edge_x = []
|
80 |
-
edge_y = []
|
81 |
-
for (src, dst) in edges:
|
82 |
-
x0, y0 = pos[src]
|
83 |
-
x1, y1 = pos[dst]
|
84 |
-
edge_x += [x0, x1, None]
|
85 |
-
edge_y += [y0, y1, None]
|
86 |
-
edge_trace = go.Scatter(
|
87 |
-
x=edge_x, y=edge_y,
|
88 |
-
line=dict(width=1, color='#888'),
|
89 |
-
hoverinfo='none',
|
90 |
-
mode='lines')
|
91 |
-
|
92 |
-
node_x = []
|
93 |
-
node_y = []
|
94 |
-
node_text = []
|
95 |
-
for node_id in G.nodes():
|
96 |
-
x, y = pos[node_id]
|
97 |
-
node_x.append(x)
|
98 |
-
node_y.append(y)
|
99 |
-
text = nodes[node_id]["metadata"].get("source", "")
|
100 |
-
node_text.append(f"{text}\nTags: {nodes[node_id]['metadata']['tags']}")
|
101 |
-
|
102 |
-
node_trace = go.Scatter(
|
103 |
-
x=node_x, y=node_y,
|
104 |
-
mode='markers+text',
|
105 |
-
marker=dict(size=10, color='skyblue'),
|
106 |
-
text=node_text, hoverinfo='text', textposition="bottom center")
|
107 |
-
|
108 |
-
fig = go.Figure(data=[edge_trace, node_trace],
|
109 |
-
layout=go.Layout(title="Document Knowledge Graph",
|
110 |
-
showlegend=False,
|
111 |
-
margin=dict(l=20, r=20, b=20, t=30)))
|
112 |
-
return fig
|
113 |
-
|
114 |
-
def handle_query(question):
|
115 |
-
"""
|
116 |
-
Answer a user question by retrieving relevant documents and summarizing them.
|
117 |
-
"""
|
118 |
-
if not question:
|
119 |
-
return "Please enter a question."
|
120 |
-
|
121 |
-
answer = answer_question(question)
|
122 |
-
return answer
|
123 |
-
|
124 |
-
# Build Gradio interface with Blocks
|
125 |
-
with gr.Blocks(title="Intelligent Content Organizer") as demo:
|
126 |
-
gr.Markdown("# Intelligent Content Organizer")
|
127 |
-
with gr.Tab("Upload / Fetch Content"):
|
128 |
-
gr.Markdown("**Add a document:** Upload a file or enter a URL.")
|
129 |
-
with gr.Row():
|
130 |
-
file_in = gr.File(label="Upload Document (PDF, TXT, etc.)")
|
131 |
-
url_in = gr.Textbox(label="Document URL", placeholder="https://example.com/article")
|
132 |
-
tags_in = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter tags or leave blank")
|
133 |
-
process_btn = gr.Button("Parse & Add Document")
|
134 |
-
doc_view = gr.Textbox(label="Document Preview", lines=10, interactive=False)
|
135 |
-
summary_out = gr.Textbox(label="Summary", interactive=False)
|
136 |
-
tags_out = gr.Textbox(label="Detected Tags", interactive=False)
|
137 |
-
status_out = gr.Textbox(label="Status/Info", interactive=False)
|
138 |
-
process_btn.click(fn=process_content, inputs=[file_in, url_in, tags_in],
|
139 |
-
outputs=[doc_view, summary_out, tags_out, status_out])
|
140 |
-
|
141 |
-
with gr.Tab("Knowledge Graph"):
|
142 |
-
gr.Markdown("**Document relationships:** Shared tags indicate edges.")
|
143 |
-
graph_plot = gr.Plot(label="Knowledge Graph")
|
144 |
-
refresh_btn = gr.Button("Refresh Graph")
|
145 |
-
refresh_btn.click(fn=generate_graph, inputs=None, outputs=graph_plot)
|
146 |
-
|
147 |
-
with gr.Tab("Ask a Question"):
|
148 |
-
gr.Markdown("**AI Q&A:** Ask a question about your documents.")
|
149 |
-
question_in = gr.Textbox(label="Your Question")
|
150 |
-
answer_out = gr.Textbox(label="Answer", interactive=False)
|
151 |
-
ask_btn = gr.Button("Get Answer")
|
152 |
-
ask_btn.click(fn=handle_query, inputs=question_in, outputs=answer_out)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
if __name__ == "__main__":
|
155 |
-
#
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
from pathlib import Path
|
4 |
+
import tempfile
|
5 |
+
import json
|
6 |
+
from typing import List, Dict, Any
|
7 |
+
import logging
|
8 |
+
|
9 |
+
from config import Config
|
10 |
+
from mcp_server import mcp
|
11 |
+
# Handle imports based on how the app is run
|
12 |
+
try:
|
13 |
+
from mcp_server import mcp
|
14 |
+
MCP_AVAILABLE = True
|
15 |
+
except ImportError:
|
16 |
+
MCP_AVAILABLE = False
|
17 |
+
print("⚠️ MCP server not available, running in standalone mode")
|
18 |
+
|
19 |
+
import mcp_tools
|
20 |
+
|
21 |
+
# Set up logging
|
22 |
+
logging.basicConfig(level=logging.INFO)
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Validate configuration on startup
|
26 |
+
try:
|
27 |
+
Config.validate()
|
28 |
+
except ValueError as e:
|
29 |
+
logger.error(f"Configuration error: {e}")
|
30 |
+
print(f"⚠️ Configuration error: {e}")
|
31 |
+
print("Please set the required API keys in your environment variables or .env file")
|
32 |
+
|
33 |
+
# Global state for search results
|
34 |
+
current_results = []
|
35 |
+
|
36 |
+
async def process_file_handler(file):
|
37 |
+
"""Handle file upload and processing"""
|
38 |
+
if file is None:
|
39 |
+
return "Please upload a file", "", "", None
|
40 |
+
|
41 |
+
try:
|
42 |
+
# Process the file
|
43 |
+
result = await mcp_tools.process_local_file(file.name)
|
44 |
+
|
45 |
+
if result.get("success"):
|
46 |
+
tags_display = ", ".join(result["tags"])
|
47 |
+
return (
|
48 |
+
f"✅ Successfully processed: {result['file_name']}",
|
49 |
+
result["summary"],
|
50 |
+
tags_display,
|
51 |
+
gr.update(visible=True, value=create_result_card(result))
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
return f"❌ Error: {result.get('error', 'Unknown error')}", "", "", None
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
logger.error(f"Error in file handler: {str(e)}")
|
58 |
+
return f"❌ Error: {str(e)}", "", "", None
|
59 |
+
|
60 |
+
async def process_url_handler(url):
|
61 |
+
"""Handle URL processing"""
|
62 |
+
if not url:
|
63 |
+
return "Please enter a URL", "", "", None
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Process the URL
|
67 |
+
result = await mcp_tools.process_web_content(url)
|
68 |
+
|
69 |
+
if result.get("success"):
|
70 |
+
tags_display = ", ".join(result["tags"])
|
71 |
+
return (
|
72 |
+
f"✅ Successfully processed: {url}",
|
73 |
+
result["summary"],
|
74 |
+
tags_display,
|
75 |
+
gr.update(visible=True, value=create_result_card(result))
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
return f"❌ Error: {result.get('error', 'Unknown error')}", "", "", None
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
logger.error(f"Error in URL handler: {str(e)}")
|
82 |
+
return f"❌ Error: {str(e)}", "", "", None
|
83 |
+
|
84 |
+
async def search_handler(query):
|
85 |
+
"""Handle semantic search"""
|
86 |
+
if not query:
|
87 |
+
return [], "Please enter a search query"
|
88 |
+
|
89 |
+
try:
|
90 |
+
# Perform search
|
91 |
+
results = await mcp_tools.search_knowledge_base(query, limit=10)
|
92 |
+
|
93 |
+
if results:
|
94 |
+
# Create display cards for each result
|
95 |
+
result_cards = []
|
96 |
+
for result in results:
|
97 |
+
card = f"""
|
98 |
+
### 📄 {result.get('source', 'Unknown Source')}
|
99 |
+
**Tags:** {', '.join(result.get('tags', []))}
|
100 |
+
|
101 |
+
**Summary:** {result.get('summary', 'No summary available')}
|
102 |
+
|
103 |
+
**Relevance:** {result.get('relevance_score', 0):.2%}
|
104 |
+
|
105 |
+
---
|
106 |
+
"""
|
107 |
+
result_cards.append(card)
|
108 |
+
|
109 |
+
global current_results
|
110 |
+
current_results = results
|
111 |
+
|
112 |
+
return result_cards, f"Found {len(results)} results"
|
113 |
+
else:
|
114 |
+
return [], "No results found"
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error in search: {str(e)}")
|
118 |
+
return [], f"Error: {str(e)}"
|
119 |
+
|
120 |
+
def create_result_card(result: Dict[str, Any]) -> str:
|
121 |
+
"""Create a formatted result card"""
|
122 |
+
return f"""
|
123 |
+
### 📋 Processing Complete
|
124 |
+
|
125 |
+
**Document ID:** {result.get('doc_id', 'N/A')}
|
126 |
+
|
127 |
+
**Source:** {result.get('file_name', result.get('url', 'Unknown'))}
|
128 |
+
|
129 |
+
**Tags:** {', '.join(result.get('tags', []))}
|
130 |
+
|
131 |
+
**Summary:** {result.get('summary', 'No summary available')}
|
132 |
+
|
133 |
+
**Chunks Processed:** {result.get('chunks_processed', 0)}
|
134 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
# Create Gradio interface
|
137 |
+
with gr.Blocks(title="Intelligent Content Organizer - MCP Agent") as demo:
|
138 |
+
gr.Markdown("""
|
139 |
+
# 🧠 Intelligent Content Organizer
|
140 |
+
### MCP-Powered Knowledge Management System
|
141 |
+
|
142 |
+
This AI-driven system automatically organizes, enriches, and retrieves your digital content.
|
143 |
+
Upload files or provide URLs to build your personal knowledge base with automatic tagging and semantic search.
|
144 |
+
|
145 |
+
---
|
146 |
+
""")
|
147 |
+
|
148 |
+
with gr.Tabs():
|
149 |
+
# File Processing Tab
|
150 |
+
with gr.TabItem("📁 Process Files"):
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column():
|
153 |
+
file_input = gr.File(
|
154 |
+
label="Upload Document",
|
155 |
+
file_types=[".pdf", ".txt", ".docx", ".doc", ".html", ".md", ".csv", ".json"]
|
156 |
+
)
|
157 |
+
file_process_btn = gr.Button("Process File", variant="primary")
|
158 |
+
|
159 |
+
with gr.Column():
|
160 |
+
file_status = gr.Textbox(label="Status", lines=1)
|
161 |
+
file_summary = gr.Textbox(label="Generated Summary", lines=3)
|
162 |
+
file_tags = gr.Textbox(label="Generated Tags", lines=1)
|
163 |
+
|
164 |
+
file_result = gr.Markdown(visible=False)
|
165 |
+
|
166 |
+
# URL Processing Tab
|
167 |
+
with gr.TabItem("🌐 Process URLs"):
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
url_input = gr.Textbox(
|
171 |
+
label="Enter URL",
|
172 |
+
placeholder="https://example.com/article"
|
173 |
+
)
|
174 |
+
url_process_btn = gr.Button("Process URL", variant="primary")
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
url_status = gr.Textbox(label="Status", lines=1)
|
178 |
+
url_summary = gr.Textbox(label="Generated Summary", lines=3)
|
179 |
+
url_tags = gr.Textbox(label="Generated Tags", lines=1)
|
180 |
+
|
181 |
+
url_result = gr.Markdown(visible=False)
|
182 |
+
|
183 |
+
# Search Tab
|
184 |
+
with gr.TabItem("🔍 Semantic Search"):
|
185 |
+
search_input = gr.Textbox(
|
186 |
+
label="Search Query",
|
187 |
+
placeholder="Enter your search query...",
|
188 |
+
lines=1
|
189 |
+
)
|
190 |
+
search_btn = gr.Button("Search", variant="primary")
|
191 |
+
search_status = gr.Textbox(label="Status", lines=1)
|
192 |
+
|
193 |
+
search_results = gr.Markdown(label="Search Results")
|
194 |
+
|
195 |
+
# MCP Server Info Tab
|
196 |
+
with gr.TabItem("ℹ️ MCP Server Info"):
|
197 |
+
gr.Markdown("""
|
198 |
+
### MCP Server Configuration
|
199 |
+
|
200 |
+
This Gradio app also functions as an MCP (Model Context Protocol) server, allowing integration with:
|
201 |
+
- Claude Desktop
|
202 |
+
- Cursor
|
203 |
+
- Other MCP-compatible clients
|
204 |
+
|
205 |
+
**Server Name:** intelligent-content-organizer
|
206 |
+
|
207 |
+
**Available Tools:**
|
208 |
+
- `process_file`: Process local files and extract content
|
209 |
+
- `process_url`: Fetch and process web content
|
210 |
+
- `semantic_search`: Search across stored documents
|
211 |
+
- `get_document_summary`: Get detailed document information
|
212 |
+
|
213 |
+
**To use as MCP server:**
|
214 |
+
1. Add this server to your MCP client configuration
|
215 |
+
2. Use the tools listed above to interact with your knowledge base
|
216 |
+
3. All processed content is automatically indexed for semantic search
|
217 |
+
|
218 |
+
**Tags:** mcp-server-track
|
219 |
+
""")
|
220 |
+
|
221 |
+
# Event handlers
|
222 |
+
file_process_btn.click(
|
223 |
+
fn=lambda x: asyncio.run(process_file_handler(x)),
|
224 |
+
inputs=[file_input],
|
225 |
+
outputs=[file_status, file_summary, file_tags, file_result]
|
226 |
+
)
|
227 |
+
|
228 |
+
url_process_btn.click(
|
229 |
+
fn=lambda x: asyncio.run(process_url_handler(x)),
|
230 |
+
inputs=[url_input],
|
231 |
+
outputs=[url_status, url_summary, url_tags, url_result]
|
232 |
+
)
|
233 |
+
|
234 |
+
search_btn.click(
|
235 |
+
fn=lambda x: asyncio.run(search_handler(x)),
|
236 |
+
inputs=[search_input],
|
237 |
+
outputs=[search_results, search_status]
|
238 |
+
)
|
239 |
+
|
240 |
+
# Launch configuration
|
241 |
if __name__ == "__main__":
|
242 |
+
# Check if running as MCP server
|
243 |
+
import sys
|
244 |
+
if "--mcp" in sys.argv:
|
245 |
+
# Run as MCP server
|
246 |
+
import asyncio
|
247 |
+
asyncio.run(mcp.run())
|
248 |
+
else:
|
249 |
+
# Run as Gradio app
|
250 |
+
demo.launch(
|
251 |
+
server_name="0.0.0.0",
|
252 |
+
share=False,
|
253 |
+
show_error=True
|
254 |
+
)
|
config.py
CHANGED
@@ -1,7 +1,124 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# from dotenv import load_dotenv
|
3 |
+
|
4 |
+
# # Load environment variables
|
5 |
+
# load_dotenv()
|
6 |
+
|
7 |
+
# class Config:
|
8 |
+
# """Configuration management for API keys and settings"""
|
9 |
+
|
10 |
+
# # API Keys (from environment variables)
|
11 |
+
# MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY", "")
|
12 |
+
# BRAVE_API_KEY = os.getenv("BRAVE_API_KEY", "")
|
13 |
+
# UNSTRUCTURED_API_KEY = os.getenv("UNSTRUCTURED_API_KEY", "")
|
14 |
+
# ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "")
|
15 |
+
|
16 |
+
# # ChromaDB Settings
|
17 |
+
# CHROMA_DB_PATH = os.getenv("CHROMA_DB_PATH", "./chroma_db")
|
18 |
+
# CHROMA_COLLECTION_NAME = "knowledge_base"
|
19 |
+
|
20 |
+
# # MCP Server Settings
|
21 |
+
# MCP_SERVER_NAME = "intelligent-content-organizer"
|
22 |
+
# MCP_SERVER_VERSION = "1.0.0"
|
23 |
+
|
24 |
+
# # Processing Settings
|
25 |
+
# MAX_FILE_SIZE_MB = 50
|
26 |
+
# SUPPORTED_FILE_TYPES = [
|
27 |
+
# ".pdf", ".txt", ".docx", ".doc", ".html", ".md",
|
28 |
+
# ".csv", ".json", ".xml", ".epub", ".rtf"
|
29 |
+
# ]
|
30 |
+
|
31 |
+
# # Model Settings
|
32 |
+
# MISTRAL_MODEL = "mistral-small-latest"
|
33 |
+
# CLAUDE_MODEL = "claude-3-haiku-20240307"
|
34 |
+
# EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
35 |
+
|
36 |
+
# @classmethod
|
37 |
+
# def validate(cls):
|
38 |
+
# """Validate that all required API keys are set"""
|
39 |
+
# missing_keys = []
|
40 |
+
# if not cls.MISTRAL_API_KEY:
|
41 |
+
# missing_keys.append("MISTRAL_API_KEY")
|
42 |
+
# if not cls.BRAVE_API_KEY:
|
43 |
+
# missing_keys.append("BRAVE_API_KEY")
|
44 |
+
# if not cls.UNSTRUCTURED_API_KEY:
|
45 |
+
# missing_keys.append("UNSTRUCTURED_API_KEY")
|
46 |
+
|
47 |
+
# if missing_keys:
|
48 |
+
# raise ValueError(f"Missing required API keys: {', '.join(missing_keys)}")
|
49 |
+
|
50 |
+
# return True
|
51 |
+
|
52 |
+
|
53 |
import os
|
54 |
from dotenv import load_dotenv
|
55 |
+
|
56 |
+
# Load environment variables
|
57 |
+
load_dotenv()
|
58 |
+
|
59 |
+
class Config:
|
60 |
+
"""Configuration management for API keys and settings"""
|
61 |
+
|
62 |
+
# API Keys - Only 2 needed, both with free tiers!
|
63 |
+
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY", "")
|
64 |
+
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "")
|
65 |
+
|
66 |
+
# ChromaDB Settings (completely free local storage)
|
67 |
+
CHROMA_DB_PATH = os.getenv("CHROMA_DB_PATH", "./chroma_db")
|
68 |
+
CHROMA_COLLECTION_NAME = "knowledge_base"
|
69 |
+
|
70 |
+
# MCP Server Settings
|
71 |
+
MCP_SERVER_NAME = "intelligent-content-organizer"
|
72 |
+
MCP_SERVER_VERSION = "1.0.0"
|
73 |
+
MCP_SERVER_DESCRIPTION = "AI-powered knowledge management with automatic tagging and semantic search"
|
74 |
+
|
75 |
+
# Processing Settings
|
76 |
+
MAX_FILE_SIZE_MB = 50
|
77 |
+
SUPPORTED_FILE_TYPES = [
|
78 |
+
".pdf", ".txt", ".docx", ".doc", ".html", ".htm",
|
79 |
+
".md", ".csv", ".json", ".xml", ".rtf"
|
80 |
+
]
|
81 |
+
|
82 |
+
# Model Settings
|
83 |
+
MISTRAL_MODEL = "mistral-small-latest" # Free tier available
|
84 |
+
CLAUDE_MODEL = "claude-3-haiku-20240307" # Free tier available
|
85 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" # Completely free
|
86 |
+
|
87 |
+
# Feature Flags - Enable/disable based on API availability
|
88 |
+
USE_MISTRAL_FOR_TAGS = bool(MISTRAL_API_KEY)
|
89 |
+
USE_CLAUDE_FOR_SUMMARY = bool(ANTHROPIC_API_KEY)
|
90 |
+
|
91 |
+
# Free alternatives settings
|
92 |
+
ENABLE_FREE_FALLBACKS = True # Always use free methods when APIs fail
|
93 |
+
|
94 |
+
@classmethod
|
95 |
+
def validate(cls):
|
96 |
+
"""Validate configuration - now more flexible"""
|
97 |
+
warnings = []
|
98 |
+
|
99 |
+
if not cls.MISTRAL_API_KEY:
|
100 |
+
warnings.append("MISTRAL_API_KEY not set - will use free tag generation")
|
101 |
+
|
102 |
+
if not cls.ANTHROPIC_API_KEY:
|
103 |
+
warnings.append("ANTHROPIC_API_KEY not set - will use free summarization")
|
104 |
+
|
105 |
+
if warnings:
|
106 |
+
print("⚠️ Configuration warnings:")
|
107 |
+
for warning in warnings:
|
108 |
+
print(f" - {warning}")
|
109 |
+
print("\n✅ The app will still work using free alternatives!")
|
110 |
+
else:
|
111 |
+
print("✅ All API keys configured")
|
112 |
+
|
113 |
+
return True
|
114 |
+
|
115 |
+
@classmethod
|
116 |
+
def get_status(cls):
|
117 |
+
"""Get configuration status for display"""
|
118 |
+
return {
|
119 |
+
"mistral_configured": bool(cls.MISTRAL_API_KEY),
|
120 |
+
"anthropic_configured": bool(cls.ANTHROPIC_API_KEY),
|
121 |
+
"free_fallbacks_enabled": cls.ENABLE_FREE_FALLBACKS,
|
122 |
+
"supported_formats": cls.SUPPORTED_FILE_TYPES,
|
123 |
+
"embedding_model": cls.EMBEDDING_MODEL
|
124 |
+
}
|
core/__init__.py
DELETED
File without changes
|
core/agent.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from core.storage import search_documents
|
3 |
-
# For Q&A we can use a simple retrieval + QA pipeline (stubbed here)
|
4 |
-
# In a real app, you might use LangChain or a HuggingFace question-answering model.
|
5 |
-
|
6 |
-
def answer_question(question: str) -> str:
|
7 |
-
"""
|
8 |
-
Agent: retrieve relevant docs and answer the question.
|
9 |
-
"""
|
10 |
-
# Retrieve top documents
|
11 |
-
results = search_documents(question, top_k=3)
|
12 |
-
doc_texts = results.get("documents", [[]])[0]
|
13 |
-
combined = " ".join(doc_texts)
|
14 |
-
# Stub: just echo the question and number of docs
|
15 |
-
if not combined.strip():
|
16 |
-
return "No relevant documents found."
|
17 |
-
return f"Answered question: '{question}' (based on {len(doc_texts)} documents)."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/ai_enrichment.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
# core/ai_enrichment.py
|
2 |
-
|
3 |
-
from mistralai import Mistral
|
4 |
-
import config
|
5 |
-
|
6 |
-
def generate_tags(text: str) -> list[str]:
|
7 |
-
"""
|
8 |
-
Use Mistral AI to generate 5-7 relevant tags for the text.
|
9 |
-
"""
|
10 |
-
with Mistral(api_key=config.MISTRAL_API_KEY) as client:
|
11 |
-
response = client.chat.complete(
|
12 |
-
model="mistral-small-latest",
|
13 |
-
messages=[{
|
14 |
-
"role": "user",
|
15 |
-
"content": f"Generate 5-7 relevant tags (comma-separated) for the following text:\n\n{text}"
|
16 |
-
}]
|
17 |
-
)
|
18 |
-
try:
|
19 |
-
content = response["choices"][0]["message"]["content"]
|
20 |
-
except (KeyError, IndexError):
|
21 |
-
return []
|
22 |
-
tags = [tag.strip() for tag in content.split(",") if tag.strip()]
|
23 |
-
return tags
|
24 |
-
|
25 |
-
def summarize_text(text: str) -> str:
|
26 |
-
"""
|
27 |
-
Use Mistral AI to generate a concise summary of the text.
|
28 |
-
"""
|
29 |
-
with Mistral(api_key=config.MISTRAL_API_KEY) as client:
|
30 |
-
response = client.chat.complete(
|
31 |
-
model="mistral-small-latest",
|
32 |
-
messages=[{
|
33 |
-
"role": "user",
|
34 |
-
"content": f"Summarize the following text in a concise manner:\n\n{text}"
|
35 |
-
}]
|
36 |
-
)
|
37 |
-
try:
|
38 |
-
summary = response["choices"][0]["message"]["content"].strip()
|
39 |
-
except (KeyError, IndexError):
|
40 |
-
return ""
|
41 |
-
return summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/components.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
class DocumentViewer(gr.components.Component):
|
4 |
-
"""
|
5 |
-
Custom Gradio component for document preview and tag editing.
|
6 |
-
(Stub implementation)
|
7 |
-
"""
|
8 |
-
def __init__(self, label=None):
|
9 |
-
super().__init__(label=label, value=None)
|
10 |
-
self.visible = True
|
11 |
-
self.interactive = False
|
12 |
-
|
13 |
-
def preprocess(self, x):
|
14 |
-
# Input is a file path (or object); just return as-is
|
15 |
-
return x
|
16 |
-
|
17 |
-
def postprocess(self, x):
|
18 |
-
# x is the raw document text; display first few lines as preview
|
19 |
-
if not x:
|
20 |
-
return ""
|
21 |
-
lines = x.splitlines()
|
22 |
-
preview = "\n".join(lines[:10])
|
23 |
-
return preview
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/components.pyi
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from gradio.events import Dependency
|
3 |
-
|
4 |
-
class DocumentViewer(gr.components.Component):
|
5 |
-
"""
|
6 |
-
Custom Gradio component for document preview and tag editing.
|
7 |
-
(Stub implementation)
|
8 |
-
"""
|
9 |
-
def __init__(self, label=None):
|
10 |
-
super().__init__(label=label, value=None)
|
11 |
-
self.visible = True
|
12 |
-
self.interactive = False
|
13 |
-
|
14 |
-
def preprocess(self, x):
|
15 |
-
# Input is a file path (or object); just return as-is
|
16 |
-
return x
|
17 |
-
|
18 |
-
def postprocess(self, x):
|
19 |
-
# x is the raw document text; display first few lines as preview
|
20 |
-
if not x:
|
21 |
-
return ""
|
22 |
-
lines = x.splitlines()
|
23 |
-
preview = "\n".join(lines[:10])
|
24 |
-
return preview
|
25 |
-
from typing import Callable, Literal, Sequence, Any, TYPE_CHECKING
|
26 |
-
from gradio.blocks import Block
|
27 |
-
if TYPE_CHECKING:
|
28 |
-
from gradio.components import Timer
|
29 |
-
from gradio.components.base import Component
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/database.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
# core/database.py
|
2 |
-
|
3 |
-
import chromadb
|
4 |
-
from chromadb.config import Settings
|
5 |
-
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
|
6 |
-
import config
|
7 |
-
|
8 |
-
def init_chroma():
|
9 |
-
"""
|
10 |
-
Initialize a ChromaDB client and collection with an embedding function.
|
11 |
-
Uses OpenAI embeddings if API key is available, otherwise a dummy embedding.
|
12 |
-
"""
|
13 |
-
# Initialize Chroma client (in-memory by default)
|
14 |
-
client = chromadb.Client(Settings())
|
15 |
-
|
16 |
-
# Determine embedding function
|
17 |
-
embedding_fn = None
|
18 |
-
try:
|
19 |
-
openai_key = config.OPENAI_API_KEY
|
20 |
-
except AttributeError:
|
21 |
-
openai_key = None
|
22 |
-
|
23 |
-
if openai_key:
|
24 |
-
embedding_fn = OpenAIEmbeddingFunction(
|
25 |
-
api_key=openai_key,
|
26 |
-
model_name="text-embedding-ada-002"
|
27 |
-
)
|
28 |
-
else:
|
29 |
-
# Dummy embedding: one-dimensional embedding based on text length
|
30 |
-
class DummyEmbedding:
|
31 |
-
def __call__(self, texts):
|
32 |
-
return [[float(len(text))] for text in texts]
|
33 |
-
embedding_fn = DummyEmbedding()
|
34 |
-
|
35 |
-
# Create or get collection named "documents"
|
36 |
-
collection = client.get_or_create_collection(
|
37 |
-
name="documents",
|
38 |
-
embedding_function=embedding_fn
|
39 |
-
)
|
40 |
-
return collection
|
41 |
-
|
42 |
-
def add_document(collection, doc_id: str, text: str, tags: list[str], summary: str, source: str):
|
43 |
-
"""
|
44 |
-
Add a document to the ChromaDB collection with metadata.
|
45 |
-
"""
|
46 |
-
metadata = {"tags": tags, "summary": summary, "source": source}
|
47 |
-
# Add document (Chroma will generate embeddings using the collection's embedding function)
|
48 |
-
collection.add(
|
49 |
-
ids=[doc_id],
|
50 |
-
documents=[text],
|
51 |
-
metadatas=[metadata]
|
52 |
-
)
|
53 |
-
|
54 |
-
def search_documents(collection, query: str, top_n: int = 5) -> list[dict]:
|
55 |
-
"""
|
56 |
-
Search for semantically similar documents in the collection.
|
57 |
-
Returns top N results with their metadata.
|
58 |
-
"""
|
59 |
-
results = collection.query(
|
60 |
-
query_texts=[query],
|
61 |
-
n_results=top_n,
|
62 |
-
include=["metadatas", "documents", "distances"]
|
63 |
-
)
|
64 |
-
hits = []
|
65 |
-
# Extract the results from the Chroma query response
|
66 |
-
ids = results.get("ids", [[]])[0]
|
67 |
-
documents = results.get("documents", [[]])[0]
|
68 |
-
metadatas = results.get("metadatas", [[]])[0]
|
69 |
-
distances = results.get("distances", [[]])[0]
|
70 |
-
|
71 |
-
for i, doc_id in enumerate(ids):
|
72 |
-
hit = {
|
73 |
-
"id": doc_id,
|
74 |
-
"score": distances[i] if i < len(distances) else None,
|
75 |
-
"source": metadatas[i].get("source") if i < len(metadatas) else None,
|
76 |
-
"tags": metadatas[i].get("tags") if i < len(metadatas) else None,
|
77 |
-
"summary": metadatas[i].get("summary") if i < len(metadatas) else None,
|
78 |
-
"document": documents[i] if i < len(documents) else None
|
79 |
-
}
|
80 |
-
hits.append(hit)
|
81 |
-
return hits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/parser.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
from bs4 import BeautifulSoup
|
3 |
-
from unstructured.partition.auto import partition
|
4 |
-
|
5 |
-
def parse_document(file_path: str) -> str:
|
6 |
-
"""
|
7 |
-
Parse a document file (PDF, DOCX, TXT, etc.) into text using Unstructured.
|
8 |
-
"""
|
9 |
-
try:
|
10 |
-
elements = partition(file_path)
|
11 |
-
# Combine text elements into a single string
|
12 |
-
text = "\n".join([elem.text for elem in elements if elem.text])
|
13 |
-
return text
|
14 |
-
except Exception as e:
|
15 |
-
return f"Error parsing document: {e}"
|
16 |
-
|
17 |
-
def parse_url(url: str) -> str:
|
18 |
-
"""
|
19 |
-
Fetch and parse webpage content at the given URL.
|
20 |
-
"""
|
21 |
-
try:
|
22 |
-
headers = {"User-Agent": "Mozilla/5.0"}
|
23 |
-
response = requests.get(url, headers=headers, timeout=10)
|
24 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
25 |
-
# Extract visible text from paragraphs
|
26 |
-
paragraphs = soup.find_all(['p', 'h1', 'h2', 'h3', 'li'])
|
27 |
-
text = "\n".join([p.get_text() for p in paragraphs])
|
28 |
-
return text
|
29 |
-
except Exception as e:
|
30 |
-
return f"Error fetching URL: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/processing.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
# core/processing.py
|
2 |
-
|
3 |
-
import requests
|
4 |
-
from unstructured.partition.html import partition_html
|
5 |
-
from unstructured.partition.auto import partition
|
6 |
-
import config
|
7 |
-
|
8 |
-
def fetch_web_content(url: str) -> str:
|
9 |
-
"""
|
10 |
-
Fetch and parse web content from the given URL into structured text.
|
11 |
-
"""
|
12 |
-
try:
|
13 |
-
# Use Unstructured to fetch and parse HTML content directly from the URL
|
14 |
-
elements = partition_html(url=url)
|
15 |
-
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
16 |
-
return text
|
17 |
-
except Exception:
|
18 |
-
# If Unstructured parsing fails, attempt a simple HTTP GET as a fallback
|
19 |
-
try:
|
20 |
-
response = requests.get(url)
|
21 |
-
response.raise_for_status()
|
22 |
-
html_text = response.text
|
23 |
-
# Attempt parsing the fetched HTML text
|
24 |
-
elements = partition(filename=None, file=html_text)
|
25 |
-
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
26 |
-
return text
|
27 |
-
except Exception:
|
28 |
-
# On failure, return empty string
|
29 |
-
return ""
|
30 |
-
|
31 |
-
def parse_local_file(file_path: str) -> str:
|
32 |
-
"""
|
33 |
-
Parse a local file into structured text using the Unstructured library.
|
34 |
-
Supports various file formats (e.g., PDF, DOCX, TXT).
|
35 |
-
"""
|
36 |
-
try:
|
37 |
-
elements = partition(filename=file_path)
|
38 |
-
text = "\n\n".join([elem.text for elem in elements if hasattr(elem, 'text') and elem.text])
|
39 |
-
return text
|
40 |
-
except Exception:
|
41 |
-
# Return empty string on failure
|
42 |
-
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/summarizer.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
def summarize_content(text: str) -> str:
|
2 |
-
"""
|
3 |
-
Generate a summary of the text. (This is a stub simulating a Claude 3 Haiku call.)
|
4 |
-
"""
|
5 |
-
# In a real app, you might call the Anthropic Claude 3 API here.
|
6 |
-
# We'll return the first 100 characters as a "summary".
|
7 |
-
summary = text.strip().replace("\n", " ")
|
8 |
-
summary = summary[:100] + ("..." if len(summary) > 100 else "")
|
9 |
-
return f"Summary: {summary}"
|
10 |
-
|
11 |
-
def tag_content(text: str) -> list:
|
12 |
-
"""
|
13 |
-
Generate tags for the text. (This is a stub simulating a Mistral 7B call.)
|
14 |
-
"""
|
15 |
-
# In a real app, you might call a tag-generation model or use embeddings.
|
16 |
-
# We'll simulate by picking some keywords.
|
17 |
-
common_words = ["data", "analysis", "python", "research", "AI"]
|
18 |
-
tags = []
|
19 |
-
lower = text.lower()
|
20 |
-
for word in common_words:
|
21 |
-
if word in lower:
|
22 |
-
tags.append(word)
|
23 |
-
if not tags:
|
24 |
-
tags = ["general"]
|
25 |
-
return tags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
core/utils.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
# core/utils.py
|
2 |
-
|
3 |
-
import re
|
4 |
-
from datetime import datetime
|
5 |
-
import hashlib
|
6 |
-
|
7 |
-
def clean_text(text: str) -> str:
|
8 |
-
"""
|
9 |
-
Clean and normalize text by removing extra whitespace.
|
10 |
-
"""
|
11 |
-
if not text:
|
12 |
-
return ""
|
13 |
-
# Collapse multiple whitespace into single spaces and strip ends
|
14 |
-
cleaned = re.sub(r'\s+', ' ', text)
|
15 |
-
return cleaned.strip()
|
16 |
-
|
17 |
-
def generate_doc_id(source: str) -> str:
|
18 |
-
"""
|
19 |
-
Generate a unique document ID based on source identifier and timestamp.
|
20 |
-
"""
|
21 |
-
timestamp = datetime.now().isoformat()
|
22 |
-
raw_id = f"{source}-{timestamp}"
|
23 |
-
return hashlib.md5(raw_id.encode()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/article_url.txt
DELETED
File without changes
|
data/document1.pdf
DELETED
File without changes
|
data/sample_note.txt
DELETED
File without changes
|
mcp_server.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from mcp.server.fastmcp import FastMCP
|
2 |
+
# import json
|
3 |
+
# from typing import Dict, List, Any
|
4 |
+
# import logging
|
5 |
+
|
6 |
+
# # Set up logging
|
7 |
+
# logging.basicConfig(level=logging.INFO)
|
8 |
+
# logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
# # Initialize MCP server
|
11 |
+
# mcp = FastMCP("intelligent-content-organizer")
|
12 |
+
|
13 |
+
# @mcp.tool()
|
14 |
+
# async def process_file(file_path: str) -> Dict[str, Any]:
|
15 |
+
# """
|
16 |
+
# Process a local file and extract content, generate tags, and create embeddings
|
17 |
+
|
18 |
+
# Args:
|
19 |
+
# file_path: Path to the file to process
|
20 |
+
|
21 |
+
# Returns:
|
22 |
+
# Dictionary containing processed content, tags, and metadata
|
23 |
+
# """
|
24 |
+
# try:
|
25 |
+
# from mcp_tools import process_local_file
|
26 |
+
# result = await process_local_file(file_path)
|
27 |
+
# return result
|
28 |
+
# except Exception as e:
|
29 |
+
# logger.error(f"Error processing file: {str(e)}")
|
30 |
+
# return {"error": str(e)}
|
31 |
+
|
32 |
+
# @mcp.tool()
|
33 |
+
# async def process_url(url: str) -> Dict[str, Any]:
|
34 |
+
# """
|
35 |
+
# Fetch and process content from a URL
|
36 |
+
|
37 |
+
# Args:
|
38 |
+
# url: URL to fetch and process
|
39 |
+
|
40 |
+
# Returns:
|
41 |
+
# Dictionary containing processed content, tags, and metadata
|
42 |
+
# """
|
43 |
+
# try:
|
44 |
+
# from mcp_tools import process_web_content
|
45 |
+
# result = await process_web_content(url)
|
46 |
+
# return result
|
47 |
+
# except Exception as e:
|
48 |
+
# logger.error(f"Error processing URL: {str(e)}")
|
49 |
+
# return {"error": str(e)}
|
50 |
+
|
51 |
+
# @mcp.tool()
|
52 |
+
# async def semantic_search(query: str, limit: int = 5) -> List[Dict[str, Any]]:
|
53 |
+
# """
|
54 |
+
# Perform semantic search across stored documents
|
55 |
+
|
56 |
+
# Args:
|
57 |
+
# query: Search query
|
58 |
+
# limit: Maximum number of results to return
|
59 |
+
|
60 |
+
# Returns:
|
61 |
+
# List of relevant documents with metadata
|
62 |
+
# """
|
63 |
+
# try:
|
64 |
+
# from mcp_tools import search_knowledge_base
|
65 |
+
# results = await search_knowledge_base(query, limit)
|
66 |
+
# return results
|
67 |
+
# except Exception as e:
|
68 |
+
# logger.error(f"Error performing search: {str(e)}")
|
69 |
+
# return [{"error": str(e)}]
|
70 |
+
|
71 |
+
# @mcp.tool()
|
72 |
+
# async def get_document_summary(doc_id: str) -> Dict[str, Any]:
|
73 |
+
# """
|
74 |
+
# Get summary and metadata for a specific document
|
75 |
+
|
76 |
+
# Args:
|
77 |
+
# doc_id: Document ID in the knowledge base
|
78 |
+
|
79 |
+
# Returns:
|
80 |
+
# Document summary and metadata
|
81 |
+
# """
|
82 |
+
# try:
|
83 |
+
# from mcp_tools import get_document_details
|
84 |
+
# result = await get_document_details(doc_id)
|
85 |
+
# return result
|
86 |
+
# except Exception as e:
|
87 |
+
# logger.error(f"Error getting document summary: {str(e)}")
|
88 |
+
# return {"error": str(e)}
|
89 |
+
|
90 |
+
# # Server metadata
|
91 |
+
# @mcp.resource("server_info")
|
92 |
+
# async def get_server_info() -> Dict[str, Any]:
|
93 |
+
# """Get information about this MCP server"""
|
94 |
+
# return {
|
95 |
+
# "name": "Intelligent Content Organizer",
|
96 |
+
# "version": "1.0.0",
|
97 |
+
# "description": "AI-powered knowledge management system with automatic tagging and semantic search",
|
98 |
+
# "capabilities": [
|
99 |
+
# "File processing (20+ formats)",
|
100 |
+
# "Web content extraction",
|
101 |
+
# "Automatic tagging",
|
102 |
+
# "Semantic search",
|
103 |
+
# "Document summarization"
|
104 |
+
# ]
|
105 |
+
# }
|
106 |
+
|
107 |
+
# if __name__ == "__main__":
|
108 |
+
# # Run the MCP server
|
109 |
+
# import asyncio
|
110 |
+
# asyncio.run(mcp.run())
|
111 |
+
|
112 |
+
from mcp.server.fastmcp import FastMCP
|
113 |
+
import json
|
114 |
+
from typing import Dict, List, Any
|
115 |
+
import logging
|
116 |
+
|
117 |
+
# Set up logging
|
118 |
+
logging.basicConfig(level=logging.INFO)
|
119 |
+
logger = logging.getLogger(__name__)
|
120 |
+
|
121 |
+
# Initialize MCP server
|
122 |
+
mcp = FastMCP("intelligent-content-organizer")
|
123 |
+
|
124 |
+
@mcp.tool()
|
125 |
+
async def process_file(file_path: str) -> Dict[str, Any]:
|
126 |
+
"""
|
127 |
+
Process a local file and extract content, generate tags, and create embeddings
|
128 |
+
"""
|
129 |
+
try:
|
130 |
+
from mcp_tools import process_local_file
|
131 |
+
result = await process_local_file(file_path)
|
132 |
+
return result
|
133 |
+
except Exception as e:
|
134 |
+
logger.error(f"Error processing file: {str(e)}")
|
135 |
+
return {"error": str(e)}
|
136 |
+
|
137 |
+
@mcp.tool()
|
138 |
+
async def process_url(url: str) -> Dict[str, Any]:
|
139 |
+
"""
|
140 |
+
Fetch and process content from a URL
|
141 |
+
"""
|
142 |
+
try:
|
143 |
+
from mcp_tools import process_web_content
|
144 |
+
result = await process_web_content(url)
|
145 |
+
return result
|
146 |
+
except Exception as e:
|
147 |
+
logger.error(f"Error processing URL: {str(e)}")
|
148 |
+
return {"error": str(e)}
|
149 |
+
|
150 |
+
@mcp.tool()
|
151 |
+
async def semantic_search(query: str, limit: int = 5) -> List[Dict[str, Any]]:
|
152 |
+
"""
|
153 |
+
Perform semantic search across stored documents
|
154 |
+
"""
|
155 |
+
try:
|
156 |
+
from mcp_tools import search_knowledge_base
|
157 |
+
results = await search_knowledge_base(query, limit)
|
158 |
+
return results
|
159 |
+
except Exception as e:
|
160 |
+
logger.error(f"Error performing search: {str(e)}")
|
161 |
+
return [{"error": str(e)}]
|
162 |
+
|
163 |
+
@mcp.tool()
|
164 |
+
async def get_document_summary(doc_id: str) -> Dict[str, Any]:
|
165 |
+
"""
|
166 |
+
Get summary and metadata for a specific document
|
167 |
+
"""
|
168 |
+
try:
|
169 |
+
from mcp_tools import get_document_details
|
170 |
+
result = await get_document_details(doc_id)
|
171 |
+
return result
|
172 |
+
except Exception as e:
|
173 |
+
logger.error(f"Error getting document summary: {str(e)}")
|
174 |
+
return {"error": str(e)}
|
175 |
+
|
176 |
+
@mcp.tool()
|
177 |
+
async def get_server_info() -> Dict[str, Any]:
|
178 |
+
"""
|
179 |
+
Get information about this MCP server
|
180 |
+
"""
|
181 |
+
return {
|
182 |
+
"name": "Intelligent Content Organizer",
|
183 |
+
"version": "1.0.0",
|
184 |
+
"description": "AI-powered knowledge management system with automatic tagging and semantic search",
|
185 |
+
"capabilities": [
|
186 |
+
"File processing (20+ formats)",
|
187 |
+
"Web content extraction",
|
188 |
+
"Automatic tagging",
|
189 |
+
"Semantic search",
|
190 |
+
"Document summarization"
|
191 |
+
],
|
192 |
+
"tools": [
|
193 |
+
{
|
194 |
+
"name": "process_file",
|
195 |
+
"description": "Process local files and extract content"
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "process_url",
|
199 |
+
"description": "Fetch and process web content"
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"name": "semantic_search",
|
203 |
+
"description": "Search across stored documents"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "get_document_summary",
|
207 |
+
"description": "Get document details"
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"name": "get_server_info",
|
211 |
+
"description": "Get server information"
|
212 |
+
}
|
213 |
+
]
|
214 |
+
}
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
# Run the MCP server
|
218 |
+
import asyncio
|
219 |
+
asyncio.run(mcp.run())
|
mcp_tools.py
CHANGED
@@ -1,122 +1,592 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
# import core.ai_enrichment as ai_enrichment
|
6 |
-
# import core.database as db
|
7 |
-
# import core.utils as utils
|
8 |
-
|
9 |
-
# # Initialize the FastMCP server instance
|
10 |
-
# mcp = FastMCP(name="IntelligentContentOrganizer")
|
11 |
-
|
12 |
-
# # Initialize the ChromaDB collection (shared for all tools)
|
13 |
-
# collection = db.init_chroma()
|
14 |
-
|
15 |
-
# @mcp.tool()
|
16 |
-
# def process_content(url: str) -> dict:
|
17 |
-
# """
|
18 |
-
# Process content from a web URL: fetch, enrich, and store.
|
19 |
-
# Returns document ID, tags, summary, and source.
|
20 |
-
# """
|
21 |
-
# content = processing.fetch_web_content(url)
|
22 |
-
# text = utils.clean_text(content)
|
23 |
-
# tags = ai_enrichment.generate_tags(text) if text else []
|
24 |
-
# summary = ai_enrichment.summarize_text(text) if text else ""
|
25 |
-
# doc_id = utils.generate_doc_id(url)
|
26 |
-
# # Add the document to the database collection
|
27 |
-
# db.add_document(collection, doc_id, text, tags, summary, source=url)
|
28 |
-
# return {"id": doc_id, "tags": tags, "summary": summary, "source": url}
|
29 |
-
|
30 |
-
# @mcp.tool()
|
31 |
-
# def upload_local_file(file_path: str) -> dict:
|
32 |
-
# """
|
33 |
-
# Process a local file: parse, enrich, and store.
|
34 |
-
# Returns document ID, tags, summary, and source.
|
35 |
-
# """
|
36 |
-
# content = processing.parse_local_file(file_path)
|
37 |
-
# text = utils.clean_text(content)
|
38 |
-
# tags = ai_enrichment.generate_tags(text) if text else []
|
39 |
-
# summary = ai_enrichment.summarize_text(text) if text else ""
|
40 |
-
# doc_id = utils.generate_doc_id(file_path)
|
41 |
-
# db.add_document(collection, doc_id, text, tags, summary, source=file_path)
|
42 |
-
# return {"id": doc_id, "tags": tags, "summary": summary, "source": file_path}
|
43 |
-
|
44 |
-
# @mcp.tool()
|
45 |
-
# def semantic_search(query: str, top_n: int = 5) -> list:
|
46 |
-
# """
|
47 |
-
# Search for documents semantically similar to the query.
|
48 |
-
# Returns top N results as a list of dictionaries.
|
49 |
-
# """
|
50 |
-
# results = db.search_documents(collection, query, top_n)
|
51 |
-
# return results
|
52 |
-
|
53 |
-
|
54 |
-
from fastmcp import FastMCP
|
55 |
-
from core.parser import parse_document, parse_url
|
56 |
-
from core.summarizer import summarize_content, tag_content
|
57 |
-
from core.storage import add_document, search_documents
|
58 |
-
from core.agent import answer_question
|
59 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
@mcp.tool(name="parse_url")
|
72 |
-
def mcp_parse_url(url: str) -> str:
|
73 |
-
"""
|
74 |
-
MCP tool: Fetch and parse webpage content from a URL.
|
75 |
-
"""
|
76 |
-
text = parse_url(url)
|
77 |
-
return text
|
78 |
-
|
79 |
-
@mcp.tool(name="summarize")
|
80 |
-
def mcp_summarize(text: str) -> str:
|
81 |
-
"""
|
82 |
-
MCP tool: Generate a summary of the provided text.
|
83 |
-
"""
|
84 |
-
return summarize_content(text)
|
85 |
-
|
86 |
-
@mcp.tool(name="tag")
|
87 |
-
def mcp_tag(text: str) -> str:
|
88 |
-
"""
|
89 |
-
MCP tool: Generate tags for the provided text (JSON list).
|
90 |
-
"""
|
91 |
-
tags = tag_content(text)
|
92 |
-
return json.dumps(tags)
|
93 |
-
|
94 |
-
@mcp.tool(name="add_to_db")
|
95 |
-
def mcp_add_to_db(doc_id: str, text: str, metadata_json: str) -> str:
|
96 |
-
"""
|
97 |
-
MCP tool: Add a document to ChromaDB with given ID and metadata (JSON).
|
98 |
-
"""
|
99 |
-
metadata = json.loads(metadata_json)
|
100 |
-
add_document(doc_id, text, metadata)
|
101 |
-
return "Document added with ID: " + doc_id
|
102 |
-
|
103 |
-
@mcp.tool(name="search_db")
|
104 |
-
def mcp_search_db(query: str, top_k: int = 5) -> str:
|
105 |
-
"""
|
106 |
-
MCP tool: Search documents using a query (semantic search). Returns JSON results.
|
107 |
-
"""
|
108 |
-
results = search_documents(query, top_k=top_k)
|
109 |
-
return json.dumps(results)
|
110 |
-
|
111 |
-
@mcp.tool(name="answer_question")
|
112 |
-
def mcp_answer_question(question: str) -> str:
|
113 |
-
"""
|
114 |
-
MCP tool: Answer a question using the agentic workflow.
|
115 |
-
"""
|
116 |
-
answer = answer_question(question)
|
117 |
-
return answer
|
118 |
-
|
119 |
-
if __name__ == "__main__":
|
120 |
-
# Run the MCP server (streamable HTTP for web integration:contentReference[oaicite:6]{index=6})
|
121 |
-
mcp.run(transport="streamable-http", host="0.0.0.0", port=7861, path="/mcp")
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import aiohttp
|
3 |
+
import chromadb
|
4 |
+
from chromadb.utils import embedding_functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import json
|
6 |
+
import logging
|
7 |
+
from typing import Dict, List, Any, Optional
|
8 |
+
from datetime import datetime
|
9 |
+
import hashlib
|
10 |
+
from pathlib import Path
|
11 |
+
import requests
|
12 |
|
13 |
+
# Document processing libraries (all free)
|
14 |
+
import PyPDF2
|
15 |
+
import docx
|
16 |
+
from bs4 import BeautifulSoup
|
17 |
+
import pandas as pd
|
18 |
+
import markdown
|
19 |
+
import xml.etree.ElementTree as ET
|
20 |
+
from newspaper import Article
|
21 |
+
import trafilatura
|
22 |
+
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# AI libraries
|
25 |
+
from config import Config
|
26 |
+
from mistralai.client import MistralClient
|
27 |
+
import anthropic
|
28 |
+
|
29 |
+
# Set up logging
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
# Initialize AI clients
|
33 |
+
mistral_client = MistralClient(api_key=Config.MISTRAL_API_KEY) if Config.MISTRAL_API_KEY else None
|
34 |
+
anthropic_client = anthropic.Anthropic(api_key=Config.ANTHROPIC_API_KEY) if Config.ANTHROPIC_API_KEY else None
|
35 |
+
|
36 |
+
# Initialize ChromaDB
|
37 |
+
chroma_client = chromadb.PersistentClient(path=Config.CHROMA_DB_PATH)
|
38 |
+
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
39 |
+
model_name=Config.EMBEDDING_MODEL
|
40 |
+
)
|
41 |
+
|
42 |
+
# Get or create collection
|
43 |
+
try:
|
44 |
+
collection = chroma_client.get_collection(
|
45 |
+
name=Config.CHROMA_COLLECTION_NAME,
|
46 |
+
embedding_function=embedding_function
|
47 |
+
)
|
48 |
+
except:
|
49 |
+
collection = chroma_client.create_collection(
|
50 |
+
name=Config.CHROMA_COLLECTION_NAME,
|
51 |
+
embedding_function=embedding_function
|
52 |
+
)
|
53 |
+
|
54 |
+
class DocumentProcessor:
|
55 |
+
"""Free document processing without Unstructured API"""
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
59 |
+
"""Extract text from PDF files"""
|
60 |
+
text = ""
|
61 |
+
try:
|
62 |
+
with open(file_path, 'rb') as file:
|
63 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
64 |
+
for page_num in range(len(pdf_reader.pages)):
|
65 |
+
page = pdf_reader.pages[page_num]
|
66 |
+
text += page.extract_text() + "\n"
|
67 |
+
except Exception as e:
|
68 |
+
logger.error(f"Error reading PDF: {e}")
|
69 |
+
return text
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def extract_text_from_docx(file_path: str) -> str:
|
73 |
+
"""Extract text from DOCX files"""
|
74 |
+
try:
|
75 |
+
doc = docx.Document(file_path)
|
76 |
+
text = "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
77 |
+
return text
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error reading DOCX: {e}")
|
80 |
+
return ""
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def extract_text_from_html(file_path: str) -> str:
|
84 |
+
"""Extract text from HTML files"""
|
85 |
+
try:
|
86 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
87 |
+
soup = BeautifulSoup(file.read(), 'html.parser')
|
88 |
+
# Remove script and style elements
|
89 |
+
for script in soup(["script", "style"]):
|
90 |
+
script.extract()
|
91 |
+
text = soup.get_text()
|
92 |
+
lines = (line.strip() for line in text.splitlines())
|
93 |
+
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
|
94 |
+
text = '\n'.join(chunk for chunk in chunks if chunk)
|
95 |
+
return text
|
96 |
+
except Exception as e:
|
97 |
+
logger.error(f"Error reading HTML: {e}")
|
98 |
+
return ""
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def extract_text_from_txt(file_path: str) -> str:
|
102 |
+
"""Extract text from TXT files"""
|
103 |
+
try:
|
104 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
105 |
+
return file.read()
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Error reading TXT: {e}")
|
108 |
+
return ""
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def extract_text_from_csv(file_path: str) -> str:
|
112 |
+
"""Extract text from CSV files"""
|
113 |
+
try:
|
114 |
+
df = pd.read_csv(file_path)
|
115 |
+
return df.to_string()
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error reading CSV: {e}")
|
118 |
+
return ""
|
119 |
+
|
120 |
+
@staticmethod
|
121 |
+
def extract_text_from_json(file_path: str) -> str:
|
122 |
+
"""Extract text from JSON files"""
|
123 |
+
try:
|
124 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
125 |
+
data = json.load(file)
|
126 |
+
return json.dumps(data, indent=2)
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error reading JSON: {e}")
|
129 |
+
return ""
|
130 |
+
|
131 |
+
@staticmethod
|
132 |
+
def extract_text_from_markdown(file_path: str) -> str:
|
133 |
+
"""Extract text from Markdown files"""
|
134 |
+
try:
|
135 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
136 |
+
md_text = file.read()
|
137 |
+
html = markdown.markdown(md_text)
|
138 |
+
soup = BeautifulSoup(html, 'html.parser')
|
139 |
+
return soup.get_text()
|
140 |
+
except Exception as e:
|
141 |
+
logger.error(f"Error reading Markdown: {e}")
|
142 |
+
return ""
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def extract_text_from_xml(file_path: str) -> str:
|
146 |
+
"""Extract text from XML files"""
|
147 |
+
try:
|
148 |
+
tree = ET.parse(file_path)
|
149 |
+
root = tree.getroot()
|
150 |
+
|
151 |
+
def extract_text(element):
|
152 |
+
text = element.text or ""
|
153 |
+
for child in element:
|
154 |
+
text += " " + extract_text(child)
|
155 |
+
return text.strip()
|
156 |
+
|
157 |
+
return extract_text(root)
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Error reading XML: {e}")
|
160 |
+
return ""
|
161 |
+
|
162 |
+
@classmethod
|
163 |
+
def extract_text(cls, file_path: str) -> str:
|
164 |
+
"""Extract text from any supported file type"""
|
165 |
+
path = Path(file_path)
|
166 |
+
extension = path.suffix.lower()
|
167 |
+
|
168 |
+
extractors = {
|
169 |
+
'.pdf': cls.extract_text_from_pdf,
|
170 |
+
'.docx': cls.extract_text_from_docx,
|
171 |
+
'.doc': cls.extract_text_from_docx,
|
172 |
+
'.html': cls.extract_text_from_html,
|
173 |
+
'.htm': cls.extract_text_from_html,
|
174 |
+
'.txt': cls.extract_text_from_txt,
|
175 |
+
'.csv': cls.extract_text_from_csv,
|
176 |
+
'.json': cls.extract_text_from_json,
|
177 |
+
'.md': cls.extract_text_from_markdown,
|
178 |
+
'.xml': cls.extract_text_from_xml,
|
179 |
+
}
|
180 |
+
|
181 |
+
extractor = extractors.get(extension, cls.extract_text_from_txt)
|
182 |
+
return extractor(file_path)
|
183 |
+
|
184 |
+
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[str]:
|
185 |
+
"""Split text into chunks with overlap"""
|
186 |
+
chunks = []
|
187 |
+
start = 0
|
188 |
+
text_length = len(text)
|
189 |
+
|
190 |
+
while start < text_length:
|
191 |
+
end = start + chunk_size
|
192 |
+
chunk = text[start:end]
|
193 |
+
|
194 |
+
# Try to find a sentence boundary
|
195 |
+
if end < text_length:
|
196 |
+
last_period = chunk.rfind('.')
|
197 |
+
last_newline = chunk.rfind('\n')
|
198 |
+
boundary = max(last_period, last_newline)
|
199 |
+
|
200 |
+
if boundary > chunk_size // 2:
|
201 |
+
chunk = text[start:start + boundary + 1]
|
202 |
+
end = start + boundary + 1
|
203 |
+
|
204 |
+
chunks.append(chunk.strip())
|
205 |
+
start = end - overlap
|
206 |
+
|
207 |
+
return chunks
|
208 |
+
|
209 |
+
async def fetch_web_content_free(url: str) -> Optional[str]:
|
210 |
+
"""Fetch content from URL using multiple free methods"""
|
211 |
+
|
212 |
+
# Method 1: Try newspaper3k (best for articles)
|
213 |
+
try:
|
214 |
+
article = Article(url)
|
215 |
+
article.download()
|
216 |
+
article.parse()
|
217 |
+
|
218 |
+
content = f"{article.title}\n\n{article.text}"
|
219 |
+
if len(content) > 100: # Valid content
|
220 |
+
return content
|
221 |
+
except Exception as e:
|
222 |
+
logger.debug(f"Newspaper failed: {e}")
|
223 |
+
|
224 |
+
# Method 2: Try trafilatura (great for web scraping)
|
225 |
+
try:
|
226 |
+
downloaded = trafilatura.fetch_url(url)
|
227 |
+
content = trafilatura.extract(downloaded)
|
228 |
+
if content and len(content) > 100:
|
229 |
+
return content
|
230 |
+
except Exception as e:
|
231 |
+
logger.debug(f"Trafilatura failed: {e}")
|
232 |
+
|
233 |
+
# Method 3: Basic BeautifulSoup scraping
|
234 |
+
try:
|
235 |
+
headers = {
|
236 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
237 |
+
}
|
238 |
+
response = requests.get(url, headers=headers, timeout=10)
|
239 |
+
|
240 |
+
if response.status_code == 200:
|
241 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
242 |
+
|
243 |
+
# Remove unwanted elements
|
244 |
+
for element in soup(['script', 'style', 'nav', 'footer', 'header']):
|
245 |
+
element.decompose()
|
246 |
+
|
247 |
+
# Try to find main content
|
248 |
+
main_content = None
|
249 |
+
|
250 |
+
# Common content selectors
|
251 |
+
content_selectors = [
|
252 |
+
'main', 'article', '[role="main"]',
|
253 |
+
'.content', '#content', '.post', '.entry-content',
|
254 |
+
'.article-body', '.story-body'
|
255 |
+
]
|
256 |
+
|
257 |
+
for selector in content_selectors:
|
258 |
+
main_content = soup.select_one(selector)
|
259 |
+
if main_content:
|
260 |
+
break
|
261 |
+
|
262 |
+
if not main_content:
|
263 |
+
main_content = soup.find('body')
|
264 |
+
|
265 |
+
if main_content:
|
266 |
+
text = main_content.get_text(separator='\n', strip=True)
|
267 |
+
|
268 |
+
# Get title
|
269 |
+
title = soup.find('title')
|
270 |
+
title_text = title.get_text() if title else "No title"
|
271 |
+
|
272 |
+
return f"{title_text}\n\n{text}"
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"BeautifulSoup failed: {e}")
|
276 |
+
|
277 |
+
return None
|
278 |
+
|
279 |
+
async def search_web_free(query: str, num_results: int = 5) -> List[Dict[str, str]]:
|
280 |
+
"""Search the web using free methods (DuckDuckGo)"""
|
281 |
+
try:
|
282 |
+
results = []
|
283 |
+
with DDGS() as ddgs:
|
284 |
+
for r in ddgs.text(query, max_results=num_results):
|
285 |
+
results.append({
|
286 |
+
'title': r.get('title', ''),
|
287 |
+
'url': r.get('link', ''),
|
288 |
+
'snippet': r.get('body', '')
|
289 |
+
})
|
290 |
+
|
291 |
+
return results
|
292 |
+
|
293 |
+
except Exception as e:
|
294 |
+
logger.error(f"Search failed: {e}")
|
295 |
+
return []
|
296 |
+
|
297 |
+
# In mcp_tools.py
|
298 |
+
|
299 |
+
async def generate_tags(content: str) -> List[str]:
|
300 |
+
"""Generate tags using Mistral AI or fallback to free method"""
|
301 |
+
try:
|
302 |
+
if mistral_client: # This is MistralClient from mistralai.client
|
303 |
+
prompt = f"""Analyze this content and generate 5-7 relevant tags.
|
304 |
+
Return only the tags as a comma-separated list.
|
305 |
+
|
306 |
+
Content: {content[:2000]}...
|
307 |
+
|
308 |
+
Tags:"""
|
309 |
+
|
310 |
+
# For mistralai==0.4.2, pass messages as a list of dicts
|
311 |
+
response = mistral_client.chat(
|
312 |
+
model=Config.MISTRAL_MODEL,
|
313 |
+
messages=[{"role": "user", "content": prompt}] # <--- CHANGE HERE
|
314 |
+
)
|
315 |
+
|
316 |
+
tags_text = response.choices[0].message.content.strip()
|
317 |
+
tags = [tag.strip() for tag in tags_text.split(",")]
|
318 |
+
return tags[:7]
|
319 |
+
else:
|
320 |
+
# Free fallback: Extract keywords using frequency analysis
|
321 |
+
return generate_tags_free(content)
|
322 |
+
|
323 |
+
except Exception as e:
|
324 |
+
logger.error(f"Error generating tags: {str(e)}")
|
325 |
+
return generate_tags_free(content)
|
326 |
+
|
327 |
+
def generate_tags_free(content: str) -> List[str]:
|
328 |
+
"""Free tag generation using keyword extraction"""
|
329 |
+
from collections import Counter
|
330 |
+
import re
|
331 |
+
|
332 |
+
# Simple keyword extraction
|
333 |
+
words = re.findall(r'\b[a-z]{4,}\b', content.lower())
|
334 |
+
|
335 |
+
# Common stop words
|
336 |
+
stop_words = {
|
337 |
+
'this', 'that', 'these', 'those', 'what', 'which', 'when', 'where',
|
338 |
+
'who', 'whom', 'whose', 'why', 'how', 'with', 'about', 'against',
|
339 |
+
'between', 'into', 'through', 'during', 'before', 'after', 'above',
|
340 |
+
'below', 'from', 'down', 'out', 'off', 'over', 'under', 'again',
|
341 |
+
'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why',
|
342 |
+
'how', 'all', 'both', 'each', 'few', 'more', 'most', 'other', 'some',
|
343 |
+
'such', 'only', 'same', 'than', 'that', 'have', 'has', 'had',
|
344 |
+
'been', 'being', 'does', 'doing', 'will', 'would', 'could', 'should'
|
345 |
+
}
|
346 |
+
|
347 |
+
# Filter and count words
|
348 |
+
filtered_words = [w for w in words if w not in stop_words and len(w) > 4]
|
349 |
+
word_counts = Counter(filtered_words)
|
350 |
+
|
351 |
+
# Get top keywords
|
352 |
+
top_keywords = [word for word, _ in word_counts.most_common(7)]
|
353 |
+
|
354 |
+
return top_keywords if top_keywords else ["untagged"]
|
355 |
+
|
356 |
+
async def generate_summary(content: str) -> str:
|
357 |
+
"""Generate summary using Claude or fallback to free method"""
|
358 |
+
try:
|
359 |
+
if anthropic_client:
|
360 |
+
message = anthropic_client.messages.create(
|
361 |
+
model=Config.CLAUDE_MODEL,
|
362 |
+
max_tokens=300,
|
363 |
+
messages=[{
|
364 |
+
"role": "user",
|
365 |
+
"content": f"Summarize this content in 2-3 sentences:\n\n{content[:4000]}..."
|
366 |
+
}]
|
367 |
+
)
|
368 |
+
|
369 |
+
return message.content[0].text.strip()
|
370 |
+
else:
|
371 |
+
# Free fallback
|
372 |
+
return generate_summary_free(content)
|
373 |
+
|
374 |
+
except Exception as e:
|
375 |
+
logger.error(f"Error generating summary: {str(e)}")
|
376 |
+
return generate_summary_free(content)
|
377 |
+
|
378 |
+
def generate_summary_free(content: str) -> str:
|
379 |
+
"""Free summary generation using simple extraction"""
|
380 |
+
sentences = content.split('.')
|
381 |
+
# Take first 3 sentences
|
382 |
+
summary_sentences = sentences[:3]
|
383 |
+
summary = '. '.join(s.strip() for s in summary_sentences if s.strip())
|
384 |
+
|
385 |
+
if len(summary) > 300:
|
386 |
+
summary = summary[:297] + "..."
|
387 |
+
|
388 |
+
return summary if summary else "Content preview: " + content[:200] + "..."
|
389 |
+
|
390 |
+
async def process_local_file(file_path: str) -> Dict[str, Any]:
|
391 |
+
"""Process a local file and store it in the knowledge base"""
|
392 |
+
try:
|
393 |
+
# Validate file
|
394 |
+
path = Path(file_path)
|
395 |
+
if not path.exists():
|
396 |
+
raise FileNotFoundError(f"File not found: {file_path}")
|
397 |
+
|
398 |
+
if path.suffix.lower() not in Config.SUPPORTED_FILE_TYPES:
|
399 |
+
raise ValueError(f"Unsupported file type: {path.suffix}")
|
400 |
+
|
401 |
+
# Extract text using free methods
|
402 |
+
full_text = DocumentProcessor.extract_text(file_path)
|
403 |
+
|
404 |
+
if not full_text:
|
405 |
+
raise ValueError("No text could be extracted from the file")
|
406 |
+
|
407 |
+
# Generate document ID
|
408 |
+
doc_id = hashlib.md5(f"{path.name}_{datetime.now().isoformat()}".encode()).hexdigest()
|
409 |
+
|
410 |
+
# Generate tags
|
411 |
+
tags = await generate_tags(full_text[:3000])
|
412 |
+
|
413 |
+
# Generate summary
|
414 |
+
summary = await generate_summary(full_text[:5000])
|
415 |
+
|
416 |
+
# Chunk the text
|
417 |
+
chunks = chunk_text(full_text, chunk_size=1000, overlap=100)
|
418 |
+
chunks = chunks[:10] # Limit chunks for demo
|
419 |
+
|
420 |
+
# Store in ChromaDB
|
421 |
+
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
|
422 |
+
|
423 |
+
metadata = {
|
424 |
+
"source": str(path),
|
425 |
+
"file_name": path.name,
|
426 |
+
"file_type": path.suffix,
|
427 |
+
"processed_at": datetime.now().isoformat(),
|
428 |
+
"tags": ", ".join(tags),
|
429 |
+
"summary": summary,
|
430 |
+
"doc_id": doc_id
|
431 |
+
}
|
432 |
+
|
433 |
+
collection.add(
|
434 |
+
documents=chunks,
|
435 |
+
ids=chunk_ids,
|
436 |
+
metadatas=[metadata for _ in chunks]
|
437 |
+
)
|
438 |
+
|
439 |
+
return {
|
440 |
+
"success": True,
|
441 |
+
"doc_id": doc_id,
|
442 |
+
"file_name": path.name,
|
443 |
+
"tags": tags,
|
444 |
+
"summary": summary,
|
445 |
+
"chunks_processed": len(chunks),
|
446 |
+
"metadata": metadata
|
447 |
+
}
|
448 |
+
|
449 |
+
except Exception as e:
|
450 |
+
logger.error(f"Error processing file: {str(e)}")
|
451 |
+
return {
|
452 |
+
"success": False,
|
453 |
+
"error": str(e)
|
454 |
+
}
|
455 |
+
|
456 |
+
async def process_web_content(url_or_query: str) -> Dict[str, Any]:
|
457 |
+
"""Process web content from URL or search query"""
|
458 |
+
try:
|
459 |
+
# Check if it's a URL or search query
|
460 |
+
is_url = url_or_query.startswith(('http://', 'https://'))
|
461 |
+
|
462 |
+
if is_url:
|
463 |
+
content = await fetch_web_content_free(url_or_query)
|
464 |
+
source = url_or_query
|
465 |
+
else:
|
466 |
+
# It's a search query
|
467 |
+
search_results = await search_web_free(url_or_query, num_results=3)
|
468 |
+
if not search_results:
|
469 |
+
raise ValueError("No search results found")
|
470 |
+
|
471 |
+
# Process the first result
|
472 |
+
first_result = search_results[0]
|
473 |
+
content = await fetch_web_content_free(first_result['url'])
|
474 |
+
source = first_result['url']
|
475 |
+
|
476 |
+
# Add search context
|
477 |
+
content = f"Search Query: {url_or_query}\n\n{first_result['title']}\n\n{content}"
|
478 |
+
|
479 |
+
if not content:
|
480 |
+
raise ValueError("Failed to fetch content")
|
481 |
+
|
482 |
+
# Generate document ID
|
483 |
+
doc_id = hashlib.md5(f"{source}_{datetime.now().isoformat()}".encode()).hexdigest()
|
484 |
+
|
485 |
+
# Generate tags
|
486 |
+
tags = await generate_tags(content[:3000])
|
487 |
+
|
488 |
+
# Generate summary
|
489 |
+
summary = await generate_summary(content[:5000])
|
490 |
+
|
491 |
+
# Chunk the content
|
492 |
+
chunks = chunk_text(content, chunk_size=1000, overlap=100)
|
493 |
+
chunks = chunks[:10] # Limit for demo
|
494 |
+
|
495 |
+
# Store in ChromaDB
|
496 |
+
chunk_ids = [f"{doc_id}_{i}" for i in range(len(chunks))]
|
497 |
+
|
498 |
+
metadata = {
|
499 |
+
"source": source,
|
500 |
+
"url": source if is_url else f"Search: {url_or_query}",
|
501 |
+
"content_type": "web",
|
502 |
+
"processed_at": datetime.now().isoformat(),
|
503 |
+
"tags": ", ".join(tags),
|
504 |
+
"summary": summary,
|
505 |
+
"doc_id": doc_id
|
506 |
+
}
|
507 |
+
|
508 |
+
collection.add(
|
509 |
+
documents=chunks,
|
510 |
+
ids=chunk_ids,
|
511 |
+
metadatas=[metadata for _ in chunks]
|
512 |
+
)
|
513 |
+
|
514 |
+
return {
|
515 |
+
"success": True,
|
516 |
+
"doc_id": doc_id,
|
517 |
+
"url": source,
|
518 |
+
"tags": tags,
|
519 |
+
"summary": summary,
|
520 |
+
"chunks_processed": len(chunks),
|
521 |
+
"metadata": metadata,
|
522 |
+
"search_query": url_or_query if not is_url else None
|
523 |
+
}
|
524 |
+
|
525 |
+
except Exception as e:
|
526 |
+
logger.error(f"Error processing web content: {str(e)}")
|
527 |
+
return {
|
528 |
+
"success": False,
|
529 |
+
"error": str(e)
|
530 |
+
}
|
531 |
+
|
532 |
+
async def search_knowledge_base(query: str, limit: int = 5) -> List[Dict[str, Any]]:
|
533 |
+
"""Perform semantic search in the knowledge base"""
|
534 |
+
try:
|
535 |
+
results = collection.query(
|
536 |
+
query_texts=[query],
|
537 |
+
n_results=limit
|
538 |
+
)
|
539 |
+
|
540 |
+
if not results["ids"][0]:
|
541 |
+
return []
|
542 |
+
|
543 |
+
# Format results
|
544 |
+
formatted_results = []
|
545 |
+
seen_docs = set()
|
546 |
+
|
547 |
+
for i, doc_id in enumerate(results["ids"][0]):
|
548 |
+
metadata = results["metadatas"][0][i]
|
549 |
+
|
550 |
+
# Deduplicate by document
|
551 |
+
if metadata["doc_id"] not in seen_docs:
|
552 |
+
seen_docs.add(metadata["doc_id"])
|
553 |
+
formatted_results.append({
|
554 |
+
"doc_id": metadata["doc_id"],
|
555 |
+
"source": metadata.get("source", "Unknown"),
|
556 |
+
"tags": metadata.get("tags", "").split(", "),
|
557 |
+
"summary": metadata.get("summary", ""),
|
558 |
+
"relevance_score": 1 - results["distances"][0][i],
|
559 |
+
"processed_at": metadata.get("processed_at", "")
|
560 |
+
})
|
561 |
+
|
562 |
+
return formatted_results
|
563 |
+
|
564 |
+
except Exception as e:
|
565 |
+
logger.error(f"Error searching knowledge base: {str(e)}")
|
566 |
+
return []
|
567 |
+
|
568 |
+
async def get_document_details(doc_id: str) -> Dict[str, Any]:
|
569 |
+
"""Get detailed information about a document"""
|
570 |
+
try:
|
571 |
+
results = collection.get(
|
572 |
+
where={"doc_id": doc_id},
|
573 |
+
limit=1
|
574 |
+
)
|
575 |
+
|
576 |
+
if not results["ids"]:
|
577 |
+
return {"error": "Document not found"}
|
578 |
+
|
579 |
+
metadata = results["metadatas"][0]
|
580 |
+
return {
|
581 |
+
"doc_id": doc_id,
|
582 |
+
"source": metadata.get("source", "Unknown"),
|
583 |
+
"tags": metadata.get("tags", "").split(", "),
|
584 |
+
"summary": metadata.get("summary", ""),
|
585 |
+
"processed_at": metadata.get("processed_at", ""),
|
586 |
+
"file_type": metadata.get("file_type", ""),
|
587 |
+
"content_preview": results["documents"][0][:500] + "..."
|
588 |
+
}
|
589 |
+
|
590 |
+
except Exception as e:
|
591 |
+
logger.error(f"Error getting document details: {str(e)}")
|
592 |
+
return {"error": str(e)}
|
requirements.txt
CHANGED
@@ -1,12 +1,23 @@
|
|
|
|
1 |
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
python-dotenv
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
beautifulsoup4
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
# Requirements for the project
|
2 |
|
3 |
+
gradio==4.44.1
|
4 |
+
mcp==1.0.0
|
5 |
+
fastmcp==0.1.0
|
6 |
+
chromadb==0.4.24
|
7 |
+
mistralai==0.4.2
|
8 |
+
anthropic
|
9 |
+
aiohttp
|
10 |
python-dotenv
|
11 |
+
sentence-transformers==2.7.0
|
12 |
+
plotly==5.22.0
|
13 |
+
pandas==2.2.2
|
14 |
+
numpy==1.26.4
|
15 |
+
PyPDF2
|
16 |
+
python-docx
|
17 |
beautifulsoup4
|
18 |
+
markdown
|
19 |
+
ebooklib
|
20 |
+
newspaper3k
|
21 |
+
trafilatura
|
22 |
+
duckduckgo-search
|
23 |
+
requests
|