|
import base64 |
|
import os |
|
import gradio as gr |
|
from mcp import ClientSession, StdioServerParameters, types |
|
from mcp.client.stdio import stdio_client |
|
from smolagents import ToolCollection, CodeAgent, load_tool, tool, ToolCallingAgent, InferenceClientModel |
|
from smolagents.mcp_client import MCPClient |
|
from smolagents import TransformersModel |
|
from dotenv import load_dotenv |
|
import yaml |
|
import requests |
|
import json |
|
from PIL import Image |
|
from datetime import datetime |
|
from outage_odyssey_ui import GradioUI |
|
import base64 |
|
from io import BytesIO |
|
from smolagents import InferenceClientModel |
|
|
|
|
|
load_dotenv() |
|
MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY") |
|
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY") |
|
CODEASTREAL_API_KEY = os.getenv("CODEASTREAL_API_KEY") |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
USE_CLOUD_MODEL = os.getenv("USE_CLOUD_MODEL", "true") |
|
|
|
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") |
|
|
|
if USE_CLOUD_MODEL == 'true': |
|
from smolagents import LiteLLMModel |
|
|
|
|
|
|
|
|
|
|
|
|
|
model = InferenceClientModel( |
|
model_id="deepseek-ai/DeepSeek-V3-0324", |
|
provider="hyperbolic", |
|
api_key=HF_TOKEN, |
|
) |
|
model_description = "This agent uses MCP tools and LLM Models using LiteLLMModel via API." |
|
print(model_description) |
|
else: |
|
from transformers import pipeline |
|
|
|
print("Loading local Qwen model...") |
|
model = TransformersModel( |
|
model_id="Qwen3-4B", |
|
device_map='auto', |
|
max_new_tokens=8192, |
|
trust_remote_code=True |
|
) |
|
print("Local model loaded successfully.") |
|
model_description = "This agent uses MCP tools and a locally-run Qwen3-4B model." |
|
|
|
|
|
@tool |
|
def pil_to_base64(pil_image: Image.Image) -> str: |
|
""" |
|
Converts a PIL Image object to a base64-encoded PNG data URL. |
|
|
|
This tool takes a PIL Image object and encodes it into a base64 string |
|
formatted as a data URL, which can be used in HTML or other contexts that |
|
support embedded images. |
|
|
|
Args: |
|
pil_image (PIL.Image.Image): A PIL Image object to be converted. |
|
|
|
Returns: |
|
str: A string representing the image in base64 format, prefixed with the MIME type. |
|
The format is: 'data:image/png;base64,<base64_string>' |
|
|
|
Example: |
|
>>> pil_to_base64(Image.open('example.png')) |
|
'.... |
|
""" |
|
buffer = BytesIO() |
|
pil_image.save(buffer, format="PNG") |
|
img_str = base64.b64encode(buffer.getvalue()).decode() |
|
return f"data:image/png;base64,{img_str}" |
|
|
|
|
|
try: |
|
mcp_client = MCPClient({"url": "http://localhost:8000/sse"}) |
|
|
|
tools = mcp_client.get_tools() |
|
|
|
tools_array = [{ |
|
"name": tool.name, |
|
"description": tool.description, |
|
"inputs": tool.inputs, |
|
"output_type": tool.output_type, |
|
"is_initialized": tool.is_initialized |
|
} for tool in tools] |
|
|
|
tool_names = [tool["name"] for tool in tools_array] |
|
print(f"Connected to MCP server. Available tools: {', '.join(tool_names)}") |
|
|
|
|
|
with open("prompts.yml", 'r', encoding='utf-8') as stream: |
|
prompt_templates = yaml.safe_load(stream) |
|
|
|
|
|
agent = CodeAgent(tools=[ pil_to_base64,*tools], model=model, prompt_templates=prompt_templates, max_steps=10, planning_interval=5, |
|
additional_authorized_imports=['time', 'math', 'queue', |
|
're', 'stat', 'collections', 'datetime', 'statistics', 'itertools', |
|
'unicodedata', 'random', 'matplotlib.pyplot', 'open', |
|
'pandas', 'numpy', 'json', 'yaml', 'plotly', 'pillow','PIL','base64' , 'io']) |
|
|
|
|
|
agent.name = "Outage Odyssey Agent" |
|
GradioUI(agent=agent, file_upload_folder="uploaded_data").launch(server_name="0.0.0.0", server_port=7860,share=False,mcp_server=True) |
|
|
|
except Exception as e: |
|
print(f"Error starting Gradio: {str(e)}") |
|
finally: |
|
mcp_client.disconnect() |
|
print("MCP client disconnected") |
|
|